
SPATIAL TRANSFER LEARNING FOR 
ESTIMATING PM2.5 IN DATA-POOR 
REGIONS

Shrey Gupta1*, Yongbee Park5*, Jianzhao Bi2, Suyash Gupta3, Andreas Züfle1, Avani Wildani1,5, Yang Liu1

1Emory University, US; 2University of Washington, US; 3University of California Berkeley, US; 4Ingkle, Korea; 5Cloudflare, US



THE PM 2.5 PROBLEM

• Particulate Matter 2.5 ~ aerosols < 2.5 µm

• Poses significant public health concern. Small enough to:

o Enter bloodstreams --> Heart diseases

o Enter Lungs --> Pulmonary diseases

• Caused due to:

o Vehicles

o Wildfires

o Industrial Processes

2

INTRODUCTION



NEED FOR TRANSFER LEARNING

Remote Sensing Data

Data collected is often inaccurate and compromised due to 

factors such as cloudy weather and high surface reflectance.
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Installing Ground Sensors

Highly accurate data but installation, scaling and maintenance 

is costly for developing regions.

Transfer Learning to the Rescue!

Transfer knowledge from region with more 

data (data-rich) to region with less data 

(data-poor).
Transfer 

Learning

Transfer from Data-rich region 

to Data-poor region
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NEED FOR SPATIAL TRANSFER 

Prior (PM2.5) transfer studies focus on forecasting models.

o Models train on historical data for locations.

o Predict future values of same locations.

Limitations:

• [L1] Not suitable for missing temporal points.

• [L2.1] Not suitable for prediction on unknown locations.

• [L2.2] Not suitable for sparse train and test locations with low 

spatial autocorrelation.

Solution:

• Instance Transfer Learning [L1]

• Capture spatial characteristics of the data [L2] 4

California-Nevada w/ PM2.5 sensors

Train Sensors

Test Sensors
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PROPOSED SOLUTION
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Instance transfer learning (ITL)

• ITL models are unaffected by missing temporal data.

• These models combine source & target domains.

Addition of a new feature that accounts for:

o Spatial dependencies – nearby locations have similar 

PM2.5 levels

o Semantic dependencies – locations with similar 

meteorological and topographical conditions have 

similar PM2.5 levels

Meteorological 

Features

Topographical 

Features

Temporal 

Features

F1 F2 F3 F4 F5 F6 LDF

+

Train Sensors

Test Sensors

Source Region Target Region

Combine source + target region data in ITL
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CONTRIBUTIONS
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• Latent Dependency Factor (LDF): We present a new feature (LDF) to 

represent spatial and semantic dependencies.

• Two-stage Autoencoder Model: We introduce a novel two-stage 

autoencoder model to generate LDF.

• Spatial Transfer Learning: We explore and design solution to the 

problem of spatial transfer learning.

• Real-world Deployment: We deploy our model on real-world data.

INTRODUCTION



FRAMEWORK
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STAGE I 

Neighborhood Cloud Generation

STAGE II 

Latent Dependency Factor (LDF) Generation

STAGE III 

Transfer Learning + Multivariate Regression

METHODOLOGY



NEIGHBORHOOD CLOUD 
GENERATION
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• Compute similarity between sensors (both target & source) 

and the objective location to find neighborhood cluster.

• Combine nearest 𝑚 stations dataset (with p features) to 

generate cluster for each location.

• The data for each station is stacked to form a larger dataset 

– neighborhood cloud dataset.

Neighborhood cloud data generation

METHODOLOGY

Euclidean Distance (Similarity), 𝑑(𝑎, 𝑏)  =  √(𝛴 (𝑎ᵢ −  𝑏ᵢ)²)



LATENT DEPENDENCY 
FACTOR (LDF) GENERATION
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Stage I Autoencoder [Encoder-Decoder]: 

• Generates the latent value using neighborhood cloud dataset.

• The encoder and decoder each have 3 1D CNN layers each.

(The encoder-decoder model inbuilt with CNN allows to capture the spatial + 

semantic information across regions)

• The information from the 3 CNN layers is summed up using an 

FNN layer which outputs the LDF value.

METHODOLOGY



LATENT DEPENDENCY 
FACTOR (LDF) GENERATION
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Stage II Autoencoder [Encoder-Estimator]:

• Increase attention on PM2.5 value of objective location in the 

encoder-estimator stage to train an optimal LDF value.

• The estimator has single FNN layer.

• The autoencoder stages alternate between the two stages.

LDF-A: Consists of PM2.5 + Aerosol Optical Depth (AOD) in the 

encoder-estimator stage

METHODOLOGY



TRANSFER + REGRESSION
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• Apply instance transfer learning on the LDF-combined 

dataset to generate source sample weights.

• Apply regression on the weighted source + target 

samples to predict PM2.5 values.

METHODOLOGY
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GRADIENT BOOSTING REGRESSION
• Ensemble model of Decision Tree to minimize pseudo-residuals 

(boosting algorithm).

• Applied on target region data.

ML MODELS

Gradient Boosting Regression 

Image Courtesy: Zhang, Tao, et al. "Improving convection trigger functions in deep convective parameterization schemes 

using machine learning." Journal of Advances in Modeling Earth Systems (2021).

DATASETS & 
MODELS
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NEAREST NEIGHBOR WEIGHING (NNW)
• Reweighs source samples by creating a Voronoi tessellation to 

calculate # target samples in it. 

• Applied on source + target region data.

TRANSFER 
MODELS

Nearest Neighbor Weighing (NNW) Voronoi Tessellation

Image Courtesy [NNW]: erikbern.com/2015/09/24/nearest-neighbor-methods-vector-models-part-1.html

Image Courtesy [Voronoi]: https://en.wikipedia.org/wiki/Voronoi_diagram

DATASETS & 
MODELS
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TARGET
DATASETS
(REGIONS)

California-Nevada

• # PM2.5 sensors: 128

• Dataset shape: (249k, 27)

• Features: Meteorological, Topographical, and 

Geographical from year 2011.

• Satellite samples (unlabeled) shape: 19.5 M

DATASETS & 
MODELS
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SOURCE
DATASETS
(REGIONS)

Eastern and North-Eastern US

• Eastern US has 607 PM2.5 sensors.

• North-eastern US has 147 PM2.5 sensors.

• Dataset shape 

o Eastern US: (143k, 27)

o North-eastern US: (37k, 27)

• Features: Meteorological, Topographical, 

and Geographical (Total Features = 77) 

from year 2011.

• Common features with Cal-Nevada: 27

DATASETS & 
MODELS
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EXPERIMENTAL
SETUP

CALIFORNIA-NEVADA

Sampling: 

• Sensors are grouped into sets of 5, 7, 9, 11 for CVs.

• Reported R² and RMSE values are averaged across 20 CVs.

Daily-data Matching: 

Daily active sensors are matched across target & source to 

generate clusters.

DATASETS & 
MODELS



RESULTS
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Models 5 7 9 11

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

GBR -0.061 8.684 0.064 8.210 0.177 7.857 0.157 7.891

NNW 0.236 7.563 0.263 7.447 0.280 7.406 0.296 7.288

NNW [LDF] 0.247 7.494 0.336 7.061 0.378 6.874 0.378 6.838

NNW [LDF-A] 0.225 7.596 0.298 7.230 0.359 6.973 0.359 6.924

Source: Eastern US

Models 5 7 9 11

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

GBR -0.061 8.684 0.064 8.210 0.177 7.857 0.157 7.891

NNW 0.199 7.732 0.294 7.286 0.301 7.297 0.298 7.257

NNW [LDF] 0.225 7.592 0.317 7.157 0.376 6.886 0.392 6.751

NNW [LDF-A] 0.201 7.702 0.320 7.122 0.378 6.873 0.374 6.847

Source: North-Eastern US

RESULTS
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ABLATION 
STUDY

Source: Eastern US Source: North-Eastern US

• Ablation study compares GBR & transfer models 

using LDF-imputed data to validate 

performance.

• We observe that addition of the LDF feature 

improves the performance of GBR.

• GBR [LDF] performing as the second-best model.

• NNW [LDF] still outperforms GBR [LDF] 

indicating LDF is useful for transfer models.

RESULTS



GBR (assumed ground truth)

QUALITATIVE RESULTS [CAL-NEVADA]
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Central Valley
LA Basin

Imperial Valley

NNW [LDF]

NNW

NNW [LDF-A]

• NNW [LDF] model provides most 

accurate PM2.5 estimates in Central 

Valley and Los Angeles Basin but 

overestimates in the Imperial Valley.

• NNW [LDF-A] performs second-best; 

its estimates in the Central Valley 

are patchy.

• The NNW model shows obscure and 

patchy patterns; it underestimates in 

Central Valley and significantly 

overestimates in Imperial Valley.

RESULTS
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FUTURE 
DIRECTIONS

Dataset Expansion: 

Incorporate datasets lacking spatial and semantic 

dependencies to broaden the scope of PM2.5 estimation.

Temporal Trend Integration: 

Enhance the LDF feature to capture temporal trends, for 

time-series data.

Application to Other Domains: 

Extending the LDF technique to domains like wildfire 

estimation and weather forecasting with similar spatial 

patterns.

DISCUSSION
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CONCLUSION

• Spatial transfer learning is solved for 

the use case of transfer between highly 

sparse and distant source & target 

regions.

• Latent Dependency Factor (LDF) as a 

new ‘spatial’ feature is introduced.

• Two-stage autoencoder model is 

designed to generate LDF.

• Quantitative results show LDF shows a 

19.34% improvement.

• Qualitative results show LDF captures 

varying concentration gradient 

accurately.

DISCUSSION



THANK YOU
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