%)'A W ingkle

- ~ EMORY
’ CLOUDFLARE uUNIVERSITY

SPATIAL TRANSFER LEARNING FOR
ESTIMATING PM2.5 IN DATA-POOR

REGIONV

Shrey Guptal*, Yongbee Park®*, Jianzhao Bi?, Suyash Gupta3, Andreas Ziifle!, Avani Wildani'®, Yang Liu?

1Emory University, US; 2University of Washington, US; 3University of California Berkeley, US; 4Ingkle, Korea; °Cloudflare, US



THE PM 2.5 PROBLEM

. PM2.5 gets inhaled,
* Particulate Matter 2.5 ~ aerosols < 2.5 pm entering the lungs..

* Poses significant public health concern. Small enough to:
o Enter bloodstreams --> Heart diseases
o Enter Lungs --> Pulmonary diseases

* Caused due to:
o Vehicles

o Wildfires

o Industrial Processes

..into Alveolus,
then carried to the

blood vessels
Simulation of PM2.5 entering and poisoning the body
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NEED FOR TRANSFER LEARNING

Remote Sensing Data

Data collected is often inaccurate and compromised due to
factors such as cloudy weather and high surface reflectance.

Installing Ground Sensors

—
Highly accurate data but installation, scaling and maintenance
is costly for developing regions. &)
A —~Q
Transfer Learning to the Rescue!
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NEED FOR SPATIAL TRANSFER

Prior (PM, ¢) transfer studies focus on forecasting models.
o Models train on historical data for locations.

o Predict future values of same locations.

Limitations: : 7 Test Sensors
* [L1] Not suitable for missing temporal points. :

e [L2.1] Not suitable for prediction on unknown locations.

* [L2.2] Not suitable for sparse train and test locations with low ‘a‘“
spatial autocorrelation.

California-Nevada w/ PM, 5 sensors
Solution:
* Instance Transfer Learning [L1]

 Capture spatial characteristics of the data [L2] 4



PROPOSED SOLUTION

. Lome T Test Sensors
Instance transfer learning (I1TL) .
* ITL models are unaffected by missing temporal data. L Tn %*,x."*“g..-;jﬁ? ’
ottt ol
. . e 1 7 > L, * . : A
* These models combine source & target domains. T, ’*”’“" = o A
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Source Region Train Sensors Target Region
Combine source + target region data in ITL
Addition of a new feature that accounts for:
. . i . . Meteorological Topographical Temporal
o Spatial dependencies — nearby locations have similar Features Features Features
PM, : levels F1 F2 F3 F4 F5  F6 -
o Semantic dependencies — locations with similar +

meteorological and topographical conditions have
similar PM, ; levels



CONTRIBUTIONS

* Latent Dependency Factor (LDF): We present a new feature (LDF) to
represent spatial and semantic dependencies.

* Two-stage Autoencoder Model: We introduce a novel two-stage
autoencoder model to generate LDF.

* Spatial Transfer Learning: We explore and design solution to the
problem of spatial transfer learning.

* Real-world Deployment: We deploy our model on real-world data.



K(a) Neighborhood Cloud Generation/

l
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LDF F1 | F2 | ... | Fn | LDOF
Autoencoder |_ >
Model

New Dataset w/ LDF

Qb) Latent Dependency Factor Generatiory

Instance

—_— ——1p | Multivariate

Transfer Regression

Learning

[ verset [ source
Combined Dataset

\ (c) Transfer Learning + Multivariate Regression /

FRAMEWORK

STAGE |
Neighborhood Cloud Generation

STAGE Il
Latent Dependency Factor (LDF) Generation

STAGE il

Transfer Learning + Multivariate Regression



K(a) Neighborhood Cloud Generation/

NEIGHBORHOOD CLOUD
GENERATION

*  Compute similarity between sensors (both target & source)
and the objective location to find neighborhood cluster.

Euclidean Distance (Similarity), d(a, b) = \/(Z' (a; — bi)z)

 Combine nearest m stations dataset (with p features) to
generate cluster for each location.

The data for each station is stacked to form a larger dataset
— neighborhood cloud dataset.

O Source Data

p+1

Im+1

O Target Data

Neighborhood cloud data generation




K(a) Neighborhood Cloud Generationj

|

LDF
Autoencoder |_,
Model

~

Fi

LDF

Mew Dataset w/ LOF

ub] Latent Dependency Factor Ge nnratiun_/

LATENT DEPENDENCY
FACTOR (LDF) GENERATION

Stage | Autoencoder [Encoder-Decoder]:
* Generates the latent value using neighborhood cloud dataset.

* The encoder and decoder each have 3 1D CNN layers each.

(The encoder-decoder model inbuilt with CNN allows to capture the spatial +
semantic information across regions)

* The information from the 3 CNN layers is summed up using an
FNN layer which outputs the LDF value.

Environmental

p+1 Autoencoder Model Dataset LDF
m+1
N B (o] TN
Latent
i Input

LDF



K(a) Neighborhood Cloud Generationj

|

LDF

Model

~

Fi

LDF

Autoencoder |_,
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LATENT DEPENDENCY
FACTOR (LDF) GENERATION

Stage Il Autoencoder [Encoder-Estimator]:

* Increase attention on PM, ;. value of objective location in the
encoder-estimator stage to train an optimal LDF value.

* The estimator has single FNN layer.
* The autoencoder stages alternate between the two stages.

LDF-A: Consists of PM2.5 + Aerosol Optical Depth (AOD) in the
encoder-estimator stage

|:| Estimator Environmental LDF

pt+1 Dataset

m+1 ®1

l Input
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K(a) Neighborhood Cloud Generationj

l
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LDF F1 | F2 | ... | Fn | LDOF
Autoencoder |_ >
Model

New Dataset w/ LDF

Qb) Latent Dependency Factor Generatiory

Instance

—_— ——1p | Multivariate

Transfer Regression

Learning

[ verset [ source
Combined Dataset

\ (c) Transfer Learning + Multivariate Regression /

TRANSFER + REGRESSION

* Apply instance transfer learning on the LDF-combined
dataset to generate source sample weights.

* Apply regression on the weighted source + target
samples to predict PM, . values.

Environmental LDF PM2.5
Dataset
A
. Adjusted Dataset
Environmental LDF from Source
Dataset
Transfer
Learning ¥
:> Regression
Model
Target Dataset

Combined Input Label
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GRADIENT BOOSTING REGRESSION
* Ensemble model of Decision Tree to minimize pseudo-residuals
(boosting algorithm).
* Applied on target region data.

Dataset
® o o O o0 o O o o O 0 O
® oo © o eXe! @) 00 0o
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M I M O D E I S Train @ Test Train@ Test Train @ Test
Tree 1 Tree 2 Treen
O Correct Prediction
Wrong Prediction
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|

Ensemble Prediction

Gradient Boosting Regression

Image Courtesy: Zhang, Tao, et al. "Improving convection trigger functions in deep convective parameterization schemes
using machine learning." Journal of Advances in Modeling Earth Systems (2021).
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NEAREST NEIGHBOR WEIGHING (NNW)
* Reweighs source samples by creating a Voronoi tessellation to
calculate # target samples in it.
* Applied on source + target region data.

TRANSFER
MODELS

Nearest Neighbor Weighing (NNW) Voronoi Tessellation

Image Courtesy [NNW]: erikbern.com/2015/09/24/nearest-neighbor-methods-vector-models-part-1.html
Image Courtesy [Voronoil: https:/en.wikipedia.org/wiki/Voronoi_diagram
13



TARGET
DATASETS
(REGIONS)

California-Nevada

* # PM,; sensors: 128
Dataset shape: (249k, 27)

* Features: Meteorological, Topographical, and
Geographical from year 2011.

* Satellite samples (unlabeled) shape: 19.5 M
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SOURCE
DATASETS
(REGIONS)
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Eastern and North-Eastern US

Eastern US has 607 PM, . sensors.

North-eastern US has 147 PM, . sensors.

Dataset shape
o Eastern US: (143k, 27)
o North-eastern US: (37k, 27)

Features: Meteorological, Topographical,
and Geographical (Total Features = 77)
from year 2011.

Common features with Cal-Nevada: 27
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EXPERIMENTAL
SETUP

CALIFORNIA-NEVADA
Sampling:
* Sensors are grouped into sets of 5, 7, 9, 11 for CVs.

* Reported R?2 and RMSE values are averaged across 20 CVs.

Daily-data Matching:

Daily active sensors are matched across target & source to
generate clusters.

16



RESULTS

Source: Eastern US

Models

R2
GBR -0.061
Al 0.236 7.563 0.263 7.447 0.280 7.406 0.296 | 7.288
NNW [LDF] 0.247 7.494 0.336 7.061 0.378 6.874 0.378 | 6.838
NNW [LDF-Al 0.225 7.596 0.298 7.230 0.359 6.973 | 0.359 | 6.924
Source: North-Eastern US
Models 11

R2 RMSE R2 RMSE R2 RMSE R2 RMSE
GBR -0.061 8.684 0.064 8.210 0.177 7.857 | 0.157 | 7.891
A 0.199 7.732 0.294 7.286 0.301 7.297 | 0.298 | 7.257
NNW [LDF] 0.225 7.592 0.317 7.157 0.376 6.886 | 0.392 | 6.751
ALY 0.201 7702 0.320 7.122 0.378 6.873 | 0.374 | 6.847




Ablation study compares GBR & transfer models
using LDF-imputed data to validate
performance.

* We observe that addition of the LDF feature
improves the performance of GBR.

ABLATI O N * GBR [LDF] performing as the second-best model.

e NNW [LDF] still outperforms GBR [LDF]

STU DY indicating LDF is useful for transfer models.
® GBR
B GBR-[LDF]
10.0, % GBRLDF-A] 10.0
9.5 & Nnw 9.5
NNW-[LDF]
9.0+ - 9.0
® ®
8.5 N 8.5
E 8.0 ‘} ‘_ J ® E 8.0 T ®
o N o )
7.5 + } *} 7.5 } *
7.0 | \ } Ll 700 | 7 *
6.5 - 6.5
6.0 5 7 9 11 6.0 5 7 9 11
Sensors Sensors

Source: Eastern US Source: North-Eastern US
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QUALITATIVE RESULTS [CAL-NEVADA]

Central Valley

LA Basin

I45

40
135

30

25

20

15

NNW [LDF] NNW [LDF-A]

NNW [LDF] model provides most
accurate PM, . estimates in Central
Valley and Los Angeles Basin but
overestimates in the Imperial Valley.

NNW [LDF-A] performs second-best;
its estimates in the Central Valley
are patchy.

The NNW model shows obscure and
patchy patterns; it underestimates in
Central Valley and significantly
overestimates in Imperial Valley.
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Dataset Expansion:

Incorporate datasets lacking spatial and semantic
dependencies to broaden the scope of PM, . estimation.

Temporal Trend Integration:

FUT U RE Enhance the LDF feature to capture temporal trends, for

DIRECTIONS time-series data.

Application to Other Domains:

Extending the LDF technique to domains like wildfire
estimation and weather forecasting with similar spatial
patterns.

20



CONCLUSION

Spatial transfer learning is solved for
the use case of transfer between highly
sparse and distant source & target
regions.

Latent Dependency Factor (LDF) as a
new ‘spatial’ feature is introduced.

Two-stage autoencoder model is
designed to generate LDF.

Quantitative results show LDF shows a
19.34% improvement.

Qualitative results show LDF captures
varying concentration gradient
accurately.
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THANK YOU

.. Avani Wildani .
Shrey Gupta* Yongbee Park* Jianzhao Bi .Suy.ash Gupto : Andreasf Zufle Cloudflare, Emory vang .L|u.
. . . . . University of California, Emory University . Emory University
Emory University Ingkle University of Washington Berkeley University

o

Checkout the Git repo:
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