Spatial Transfer Learning for Estimating PM_{2.5} in Data-poor Regions

Shrey Gupta¹, Yongbee Park⁴, Jianzhao Bi², Suyash Gupta³, Andreas Züfle¹, Avani Wildani^{1,5}, Yang Liu¹ ¹ Emory University, USA, ² University of Washington, USA, ³ University of California, Berkeley, USA, ⁴ Ingkle, South Korea, ⁵ Cloudflare, USA.

Particulate Matter 2.5 (PM 2.5):

- Aerosol with size $< 2.5 \,\mu m$.
- Causes respiratory and cardiovascular illnesses.
- Caused due to vehicles, wildfires, etc.

INTRODUCTION

Limitations in PM 2.5 data collection:

- **Remote-sensing Data:** inaccurate due to weather-related factors.
- **Ground-sensor Data:** equipment is costly to install, maintain and scale.

Transfer Learning (TL) to the Rescue!! But ...

- Previous TL models are forecasting models.
- TL models don't account for spatial dependencies.
- Do not account for semantic dependencies.
- Poor performance on unknown test locations.

GOAL Design a solution to achieve spatial transfer learning such that it accounts for spatial and semantic dependencies, can predict on unknown test locations as well as perform nowcasting.

DATASETS AND MODELS										
 Target Dataset Regions a) California-Nevada (US) [128 sensors] [2] b) Lima (Peru) [10 sensors][3] Source Dataset Regions a) Eastern US b) North-eastern US 	 Transfer Learning Scenarios a) Simulated Transfer: a) Target: California-Nevada; Source: Eastern US b) Target: California-Nevada; Source: North-eastern US b) Real-world Transfer: a) Target: Lima; Source: Eastern US 	Experimental Setup Simulated Transfer: # Target sensors: [5,7,9, 11] Real-world Transfer: # Target sensors: 10 Regression Models: a) Random Forest (RF) b) Gradient Boosting (GBR)	 Transfer Learning Models: a) Nearest Neighbor Weighing (NNW) b) Kullback-Leibler Importance Estimation Procedure (KLIEP) c) Kernel Mean Matching (KMM) d) Fully-connected NN (FNN) NNW, KLIEP and KMM are Instance Transfer models and ENN is Parameter Transfer model [1]. 							

METHODOLOGY

Neighborhood Cloud

Two-stage Autoencoder for LDF Generation

Neighborhood Cloud Dataset: 12 neighbors with (p+1) features selected based on similarity to objective location. Clustered dataset has size $(p+1) \times (12 + 1)$.

QUANTITATIVE RESULTS

COMPARISON OF BEST PERFORMING BASELINES W/ & W/O LDF FEATURES										
Sensors →	5		7		9		11			
Models	R2	RMSE	R2	RMSE	R2	RMSE	R2	RMSE		
Gradient Boost	-0.061	8.684	0.064	8.210	0.177	7.857	0.157	7.891		
SOURCE: EASTERN US										
NNW	0.236	7.563	0.263	7.447	0.280	7.406	0.296	7.288		
NNW [LDF]	0.247	7.494	0.336	7.061	0.378	6.874	0.378	6.838		
NNW [LDF-A]	0.225	7.596	0.298	7.230	0.359	6.973	0.359	6.924		
SOURCE: NORTH-EASTERN US										
NNW	0.199	7.732	0.294	7.286	0.301	7.297	0.298	7.257		
NNW [LDF]	0.225	7.592	0.317	7.157	0.376	6.886	0.392	6.751		
NNW [LDF-A]	0.201	7.702	0.320	7.122	0.378	6.873	0.374	6.847		

Two-Stage Autoencoder

STAGE I: Encoder-Decoder

- Encoder summarizes input data to generate latent value. Decoder employs backpropagation.
- Both have 31-D CNN layers w/ varying filter size.

STAGE II: Encoder-Estimator

- Increases attention on PM_{2.5} labels
- Has 1 FNN layer w/ 1 weigh + bias
- Utilizes PM_{2.5} value of objective location. The two stages alternate training over epochs.

LDF-A: Uses PM_{2.5} and Aerosol Optical Depth (AOD) in the Encode-Estimator stage.

Optimal 'k' Neighbors

- 12 neighbors selected from set {4, 8, 12, 16}.
- NNW is used for experiments.
- Similar results with other transfer models.

- For the ML models (GBR, RF), only target data samples are utilized.
- GBR performs the best among ML models.
- NNW performs the best among all transfer models w/ and w/o LDF feature.

Ablation Study

GBR [LDF] show performance improvement, however, NNW [LDF] still outperforms it indicating that LDF is suited for instance transfer models.

California-Nevada

CONCLUSION

California-Nevada

patchy estimation.

NNW [LDF] has the most

optimal $PM_{2.5}$ estimation.

Other models have obscure &

NNW [LDF] has the most accurate

concentration gradient of $PM_{2.5}$

estimation in inland and the

Andes mountain region.

The Latent Dependency Factor (LDF) feature improves the prediction accuracy for transfer learning models by 19.34% over the baseline models.

References:

Lima

GBR-[LDF]

NNW-[LDF]

NNW

GBR-[LDF-A]

[1] Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. *IEEE Transactions on knowledge and data engineering*, 22(10), 1345-1359.

[2] Park, Y., Kwon, B., Heo, J., Hu, X., Liu, Y., Moon, T.: Estimating pm2. 5 concentration of the conterminous united states via interpretable convolutional neural networks. Environmental Pollution 256, 113395 (2020)

[3] Vu, B.N., Sánchez, O., Bi, J., Xiao, Q., Hansel, N.N., Checkley, W., Gonzales, G.F., Steenland, K., Liu, Y.: Developing an advanced pm2. 5 exposure model in lima, peru. Remote sensing 11(6), 641 (2019)

Checkout the Github repository for the paper.

E: <u>yongbee.park@ingkle.com</u> E: <u>shrey.gupta@emory.edu</u> Website : Scan here

