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INTRODUCTION

 MOTIVATION

● Prediction of atmospheric pollution (PM 2.5) requires the 
installation of costly equipment.

● Developing countries lack investment in equipment and 
suffer from data-deficiency.

● Knowledge Transfer Methodologies (Transfer Learning): 
Utilize data from data-rich regions and adapt it for 
prediction-modeling for data-scarce regions. 

 GOAL

● Improve current Instance Transfer Learning (ITL) 
methodologies that suffer from overfitting and are domain-
specific for real-world datasets.

● Cross-domain Collaboration [AI/ML + Environmental 
Science]: To use classical machine learning algorithms for 
better interpretability for domain experts.

RELEVANT CONCEPTS

AdaBoost
Adaptive Boosting is an ensemble methodology that sequentially 
combines (over N chosen iterations) a set of weak learners to 
generate a strong learner. 

 
AdaBoost.R2 (Adaptive Boosting for Regression)
Uses adjusted error:

Weight update takes place as:

TrAdaBoost = Transfer Learning + AdaBoost

TrAdaBoost.R2 = Transfer Learning + AdaBoost.R2

Importance Sampling
Choosing samples to train upon by measuring the importance of 
the instances for prediction. Techniques used:

1. L1/L2 Norm.
2. Similarity Measure.

Variance Sampling (using k-Center Sampling)
Introducing noise (source samples) in the target dataset to 
increase its variability. 

Fig. 1: Flow-chart for k-Center sampling employed for Variance Sampling in 
Sampling.TBoost.

METHODOLOGY

● Sampling.TBoost is a successor for 
TrAdaBoost.R2 [1].

● We use Importance Sampling to get source 
domain samples most similar to target domain 
samples. We use Variance Sampling on target 
domain samples.

● We employ AdaBoost.R2 instead of 
AdaBoost.R2’ as it reduces the generalizability of 
the model.
○ AdaBoost.R2’: Modified version of 

AdaBoost.R2 where the weights of source 
instances are frozen whereas the weights 
of target instances are updated (focussed 
domain-adaptation).

● The weights of the training instances are 
updated as: Fig 2: Pipeline showing different stages of Sampling.TBoost

where β , e and Z are previously defined. 
α is the fixed learning rate chosen as 0.1. 
The no. of source instances are p and the no. of target instances are q.

RESULTS

Fig 3: Comparison of transfer learning algorithms– TRADA: TrAdaBoost, STRADA: Sampling.TBoost, KMM: 
Kernel Mean Matching, and KLIEP: Kullback-Leibler Importance Estimation, IWKRR: Importance Weighted-

Kernel Ridge Regression. The Interquartile Range (IQR), mean value (marker: yellow ”X”),and median value 
(marker: red line) for each algorithm over the iterations have been highlighted. The datasets for which 

Sampling.TBoost performs particularly well are marked (marker: purple).

    DATASET

● We chose 8 regression datasets 
from the UCI machine learning 
repository [2] as shown in Fig 3.

● The datasets were divided into 
source, target, and test sets using 
the splitting methodology used by 
Pardoe et al. [1].

● Splitting Methodology [Conceptual 
Split]:  
○ Identifying moderately 

correlated feature (FM) with 
the target variable.

○ Split into source-target based 
on the range of values of FM.

● Simulated a real-world Transfer 
Learning Problem: 

                  SizeTarget <<< SizeSource

    ANALYSIS

● Sampling.TBoost consistently 
performs well -- low RMSE and 
high R-squared score.

● Methodologies like IW-KRR.TL and 
TTR2 sometimes outperform 
Sampling.TBoost but fluctuate 
highly in their performance.

● TTR2 is the baseline algorithm for 
this study.

● Sampling.TBoost outperforms TTR2 
on:
○ 5/8 datasets for Root Mean 

Squared Error.
○ 8/8 datasets for R-squared 

Score.

CONCLUSION

● We introduce Sampling.TBoost, a complexity-tolerant, 
domain-agnostic, boosting-based transfer learning 
algorithm. 

● Sampling.TBoost uses Importance Sampling and 
unconstrained weight update strategy to outperform 
competitive transfer learning methodologies.

● Sampling.TBoost improves the average performance by 
12% across all diverse distribution regression datasets. 

● The changes we propose to TrAdaBoost.R2 are modest 
enough to function as a succeful replacement. 
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