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Abstract
Current instance transfer learning (ITL) methodologies use domain adaptation and sub-space transformation to achieve
successful transfer learning. However, these methodologies, in their processes, sometimes overfit on the target dataset or
suffer from negative transfer if the test dataset has a high variance. Boosting methodologies have been shown to reduce the
risk of overfitting by iteratively re-weighing instances with high-residual. However, this balance is usually achieved with
parameter optimization, as well as reducing the skewness in weights produced due to the size of the source dataset. While
the former can be achieved, the latter is more challenging and can lead to negative transfer. We introduce a simpler and more
robust fix to this problem by building upon the popular boosting ITL regression methodology, two-stage TrAdaBoost.R2.
Our methodology, S- TrAdaBoost.R2, is a boosting-based ensemble methodology that utilizes importance sampling to
reduce the skewness due to the source dataset. We show that S- TrAdaBoost.R2 performs better than competitive transfer
learning methodologies 63% of the time. It also displays consistency in its performance over diverse datasets with varying
complexities, as opposed to the sporadic results observed for other transfer learning methodologies.

Keywords Instance transfer learning · Negative transfer · Domain adaptation

1 Introduction

While semi-supervised learning and unsupervised learning
methodologies work well for partially labeled or unlabelled
datasets [5, 47], they fall short for instances where the sam-
ple size is small [25, 48, 65–67]. Instance transfer learning
(ITL) [19, 21, 28, 46, 48, 66, 67], a sub-class of data-based
transfer learning approaches [73], is designed for limited
and labeled samples, shared feature space, and indepen-
dent and identically distributed (i.i.d) data-distributions [49,
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62], making it ideal for real-world datasets [12, 14, 35,
39, 43, 51]. It stands apart from its counterparts, such as
feature-transfer learning and parameter-transfer learning, as
it allows data adjustment and transformation of domain
instances, making it ideal for dissimilarly distributed source
and target domains. Moreover, ITL methodologies are as
statistically interpretable [13] as they are powerful [6, 66],
which increases their usability for domain experts [64] who
avoid complex, black-box methodologies [4, 29, 34]. There-
fore, these methodologies have the advantage of being less
complex but equally reliable when compared to deep trans-
fer methodologies. Another reason for leaning toward ITL
methodologies is because it is easier to transfer the source
domain by applying adaptation methodologies [32, 57] as
well as using techniques involving reduction of distribution
difference between the source and the target domain [15,
27, 57]. The accuracy of prediction does not just depend
on the transfer learning methodology but also involves the
nature of the distribution. Real-world datasets suffer from
collecting data that is complete, high-resolution, and evenly
sampled. This is due to the dependence on the cost of equip-
ment which can result in hardware limitations. This leads
to the resulting dataset varying in resolution as well as the
quality [39]. Hence, a robust transfer learning methodology
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should perform consistently well for data distributions with
varying complexities.

Among the ITL methodologies, we employ ensemble
methodology, especially the boosting methodology [13] as
it aggregates the results from multiple learners. Similarly,
the transfer boosting methodology TrAdaBoost.R2 [50]
is regularized and uses domain adaptation for iteratively
re-weighing the source instances with respect to the target
dataset for knowledge transfer [61]. The underlying archi-
tecture is AdaBoost [26], which focuses on misclassified
training instances, leading to contextual learning. However,
boosting methodologies suffer from negative transfer [53]
when the source dataset size is large compared to the target
dataset, leading to a skewed final model. To address the prob-
lem of negative transfer, we introduce S- TrAdaBoost.R2,
a successor to two-stage TrAdaBoost.R2 (TTR2) that uses
importance sampling [36, 48, 72] to improve the alignment of
source instanceswith the target values, and applies a balanced
weight update strategy to mitigate the skewness generated
due to the large sample size of source datasets. We test
S- TrAdaBoost.R2 across a range of standard regression
datasets with limited target instances and varying complex-
ities, and find that it outperforms other ITL methodologies
63% of the times and the baseline TTR2 more than 75%
of the times. Notably, it has consistent performance (RMSE
and R-squared score) for both the regular comparative study
and the Ablation study (Fig. 2 and Table 2), as opposed to
fluctuating results observed for other methodologies.

The primary contributions of this paper are given as fol-
lows:

1. We introduce S- TrAdaBoost.R2, complexity-tolerant,
domain-agnostic boosting-based transfer learning algo-
rithm that uses importance sampling and a balanced
weight update strategy to outperform its predeces-
sor TTR2 and other competitive ITL methodologies.

2. We discuss the complexity measures, i.e., metrics to
quantify the complexity of distribution. They catego-
rize the distribution based on correlation, linearity, and
smoothness, to provide a numerical estimate of its sim-
plicity.

3. We demonstrate that S- TrAdaBoost.R2 outperforms
competitive ITL methodologies when measured in terms
of accuracy and loss, for high-complexity datasets.
We also provide the ablation analysis for Importance
Sampling, which demonstrates the modularity and com-
mutability of the technique.

2 Background

Previous work on transfer learning [19, 67] providesmethod-
ologies formeasuring the shared information content between

multiple domains in transfer learning [42, 44, 59]. These
models attempt to find common structural representations of
source instances to gauge the quantity as well as the qual-
ity of the transfer. However, for highly dissimilar source and
target domain instances, a reduction of prediction accuracy
for transfer learning algorithms when compared to non-
transfer learning algorithms i.e., negative transfer is com-
monplace [53]. Figure1 shows negative transfer when TTR2
and AdaBoost.R2 are fitted over the concrete dataset from
UCI machine learning repository [3]. We observe a decline
in TTR2’s performance as the target sample size increases.
This shows a trade-off in the performance of transfer learn-
ing algorithms to the sample size of the target distribution.
Hence, transfer learning algorithms perform better when the
sample size of a target dataset is small.

The concept of translating knowledge and model across
domains has been much researched upon and hence, trans-
fer learning, similar to machine learning, is observed for
both classical transfer learning [10, 15, 27, 50] and deep
transfer learning methodologies [4, 29, 34, 40, 60, 69, 71,
74]. While deep networks can often improve transfer accu-
racy, they sacrifice model interpretability, generalizability,
adaptability, and flexibility for more diverse tasks [9, 52].
Whereas, ITL algorithms have more transparency compared
to deep transfer models as they do not suffer from obscurity
in showing intermediary steps and learned concepts. Even
for unrelated source and target domains, the source instances
adapt to the target instances by either re-weighting [10, 27] or
transforming to the target space [15], indicative of the adapt-

Fig. 1 Negative transfer in TTR2 is induced as a result of increasing
the target sample size from 35 to 63% of the total training data. The
baseline algorithm is AdaBoost.R2. For a larger target sample size,
the baseline performs better than TTR2
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ability of ITLmethodologies. The current ITLmethodologies
can be vaguely divided into two types based on how they
apply the weighing strategy to the source domain instances.
The first one involves re-weighing all the source instances
at once using techniques such as Kernel Mean Matching
(KMM) [15, 32], Weighted-Kernel Ridge Regression [27],
Kullback–Leibler Importance Estimation [57], translating
training instances to an Invariant Hilbert Space [30], or
learning source domain instance weights based on the con-
ditional distribution difference from the target domain [11].
The second type of methodology is the ensemble learning
methodology, primarily including boosting techniques.

2.1 Boosting

Boosting [26] is an ensemble technique that builds a clas-
sifier by using a set of weak learners, whereby the weights
of the training samples are updated over a chosen number
of iterations, and finally these weak learners are combined
to generate a strong learner. Popular boosting methodologies
such asAdaBoost.R2 [20] typically assume that the test and
training datasets have a similar distribution and hence do not
require domain adaptation. They do not suffer from overfit-
ting [58] and have a robust prediction over diverse datasets.

2.1.1 Boosting for transfer learning

TrAdaBoost [16] is a classification boosting framework
that applies transfer learning to compensate for a lack of train-
ing instances for the target dataset. The source and target data
instances are merged to form the training data for the TrAd-
aBoost, and in each iteration, the weights of the instances
are adjusted such that the misclassified target instances have
their weights increased, whereas the misclassified source
instances have their weights reduced, in order to reduce their
impact toward the model learning. However, this may lead
to model over-fitting, and reduction in the variance of the
trainingmodel, therefore negatively affecting the model gen-
eralizability [63].

2.1.2 Boosting for regression transfer

TrAdaBoost.R2 [50] builds upon TrAdaBoost [20] for
regression problems, using adjusted error over residuals and
reweighing of the instances. The improved version, called
two-stageTrAdaBoost.R2 (TTR2), is divided into two stages.
The first stage involves gradually reducing the weights of
the source instances until a certain cross-validation thresh-
old is achieved. In the second stage, weights of the source
instances are frozen while the weights of the target instances
are updated as in AdaBoost.R2. The bi-update methodol-
ogy for TTR2 helps reduce the skewness produced due to
source instances. This mostly happens in the cases when

source sample size is very large compared to the target sample
size, which consequently makes the model learning biased
toward the source domain.

2.2 Variants of regression transfer

Pardoe et al. [50] introduced two categories of transfer learn-
ing algorithms. The first category contains algorithms that
choose the best hypothesis from a set of experts, each rep-
resenting the models for the corresponding source dataset.
This category includes algorithms such as ExpBoost.R2
and Transfer Stacking. Algorithms in the second category,
which include TrAdaBoost.R2 and TTR2, use the grouped
source and target datasets to perform boosting. Since boost-
ing methodologies involve instance reweighing, they fall
under the category of transfer learning algorithms that use
domain adaptation. This is especially useful and applicable
for real-world datasets with dissimilar domain distributions.
Hence, such domain adaptation transfer methodologies help
in reducing the burden of maintaining expert systems [53].
Apart from the boosting methodologies, the varying domain
adaptation approaches include using a kernel-employing
Gaussian process [10] for source instance modification or
kernel ridge regression, and discrepancy minimization for
domain adaptation [15]. Similar to importance sampling [48],
several studies [27, 45] have used importance weighting of
source instances to improve inference for transferring knowl-
edge. Transfer methodologies using approaches similar to
active learning, such as [18] (employing modeling structure
with second-orderMarkov chains), as well as the burgeoning
variety of deep learning approaches [5, 17], are indicative
of the usefulness of active learning in the form of impor-
tance sampling as a viable technique to be picked up by ITL
methodologies.

2.3 Importance sampling

Importance sampling is a methodology based on the concept
that certain instances of the source dataset are more sim-
ilarly distributed to the instances in the target dataset and
thus should be sampled for learning optimal transfer mod-
els. The core tenet of importance sampling is that models
should be trained with some cognizance of a multi-domain
transfer, in order to avoid stale training data [36, 48, 68].
Zhao et al. [72] introduce stochastic optimization for impor-
tance sampling of non-transfer learning problems, to reduce
variance and improve convergence. Elvira et al. [22, 23] uti-
lize gradient-based learning whereas Bullago et al. [8] and
Schuster et al. [55] apply Monte Carlo methods to apply
adaptive importance sampling. Salaken et al. [54] present
a seeded sampling technique for transfer learning that we
extend to form the variance sampling component used by
our algorithm, S- TrAdaBoost.R2. Their work introduces
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an algorithm to cluster the source domain instances which
are then translated to limited target domain instances for
knowledge/domain adaptation. In the following section, we
describe howwe utilize the concept used by seeded sampling
for cherry picking instances from the source domain for the
purpose of introducing variance in the target dataset.

3 Methodology

ProblemdefinitionGiven source and target datasets, such that
their instances are denoted by xT and x S respectively. Hence,
the target dataset is denoted as XT = {xT1 , xT2 , . . . , xTm }
for m instances and source dataset is denoted as XS =
{x S1 , x S2 , . . . , x Sn } for n instances. Similarly, the target output
dataset is denoted as Y T = {yT1 , yT2 , . . . , yTm } and the source
output dataset is denoted as Y S = {yS1 , yS2 , . . . , ySn }. The
target domain suffers from significant data deficiency and
dissimilarity of distribution compared to the source domain.
Our goal is tofind a transfer learning approach that canuse the
source domain instances as leverage for building the predic-
tion model as well as avoiding negative transfer. The transfer
learning algorithm should perform consistently well on vary-
ing domain distributions with differing complexities.
ApproachS- TrAdaBoost.R2 is a transfer regression boost-
ing algorithm which builds a model, h f : X → Y , such
that h f is the final learned hypothesis of the ensemble of
hypotheses over the learning iterations, using the training
data which is a combination of source and target datasets
that share a similar feature space but have dissimilar distribu-
tions. Hence by this definition, the combined training dataset
(source + target) can be denoted as {(x, y)‖x ∈ XT ∪XS, y ∈
Y T ∪Y S and XT , XS,Y T ,Y S ∈ Rd} where d represents the
feature space of the source and target domain.

Algorithm 1: k-Center Sampling

Input: XT , Y T , XS , Y S

Output: Labeled dataset XVT (size k).
1 Find XC ⊂ XS such that XC = {xC1 , xC2 , ..., xCk } has k samples,

obtained using k-means clustering on XS .
2 Initialize XE = φ (Empty-set)
3 for xC ∈ XC do
4 Find xT such that ∀xT ∈ XT min(‖XC − xT ‖)

XE ∪ {xT }
5 end for
6 Repeat steps 3 to 5 and obtain set XVT ⊂ XS closest to instances

in set XE .
7 return XVT

3.1 S-TRADABOOST.R2

To improve the performance of TTR2, we present S-
TrAdaBoost.R2 as shown in Algorithm 2. There are
two main areas where S- TrAdaBoost.R2 diverges from
its predecessor, TTR2; the first is applying importance
sampling, and the second is the weight update strategy
for S- TrAdaBoost.R2, which differs from the TTR2. In
the following subsections, we elaborate upon these dif-
ferences as well as determine the time complexity of S-
TrAdaBoost.R2.

3.1.1 Sampling

In order to improve the prediction accuracy,
S- TrAdaBoost.R2 initially samples the source dataset,
XS , to obtain optimal representative instances, i.e. similar
instances to the target dataset, XT . Hence, before merging
the source domain and target domain samples, we apply
importance sampling to carefully select favorable source
domain instances. We utilize a greedy approach for calculat-
ing the distance between the source and the target instances.
Such an importance sampling can be achieved by utiliz-
ing distance measures (Euclidean, Manhattan, and more) as
well as alternative methodologies utilizing gradient-based
and similarity-based sample selection [8, 22, 23, 55]. For
our experiments, we use the Euclidean distance (L2 norm).
Hence, we find the set XES ⊂ XS such that,

XES = ‖xSi − x̄T‖ ∀xi ∈ XS

where x̄ T is the mean of target instances, ‖·‖ is the Euclidean
distance, and |XES| = |XS|, i.e. they share the same car-
dinality. We select the top p instances from XES for the
source dataset, which reduces the source dataset size to
XK = {xK1 , xK2 , . . . , xKp } such that p � n and discard the
remaining (n − p) instances since they failed the similarity
testing threshold.

Furthermore, to improve the generalizability of the pre-
diction model, we also induce variance in the target dataset
whereby source instances most similar to the target instances
are added using the k-center sampling, an approach presented
in Algorithm 1. Including the most similarly distributed
source samples in the target dataset improves the fit for
the regressor since S- TrAdaBoost.R2 focuses more on
target instances than the source instances. These similarly
distributed source samples act as noise for the target distri-
bution and thereby improve the generalization error. Even
though TTR2 tries to mitigate this using its two-stage source
instance penalizing process, we found that reducing the
source sample size using importance sampling, as well as
performing variance sampling, allows S- TrAdaBoost.R2
to perform better compared to its predecessor.
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k-center sampling k-center sampling is an unsupervised
approach that returns k centroids, where k is equal to the
number of source instances in the set, XS (Algorithm 1). We
employ k-center sampling in our methodology to introduce
noise in the target dataset, in order to increase its variability.
After the selection of centroids, the target instances closest
to these centroids are selected as the representative target set,
XC . The source instances most similar to the representative
target set are chosen as the final subset, XVT , for inclusion
into the target dataset. The k-center samplingmethodology is
presented in Algorithm 1. The final size of the target dataset
is given as follows: q = n+k. For the k-center sampling, the
time complexity is O(N 2) as a result of using the k-means
clustering for calculating the closeness. Hence, the sampling
pipeline produces a new source dataset (due to Importance
Sampling) and a new target dataset (due to Variance Sam-
pling) as XES and XVT respectively.

Algorithm 2: S- TrAdaBoost.R2
Input: The labeled data sets, XS (size n) and XT (size m)

The number of estimators, N
The number of cross-validation folds, F
Number of Steps/Iterations, S
The base learning algorithm, learner
Learning rate, α

Output: Final hypothesis, h f
1 Importance Sampling

Get X ES (updated source dataset) containing p instances (from
XS) most similar to XT .

2 Variance Sampling
Get XVT (updated target dataset) containing q instances,
obtained using k-Center Sampling on set XT .

3 Initialize
Initial weight w1 = 1/(p + q)

4 for t ← 1 to S do
5 Call AdaBoost.R2 with N estimators and learner to obtain

hypothesis ht .
6 Calculate the adjusted error using the hypothesis ht over F

folds as,

ei = |y(xi ) − h(xi )|/J

where J = max(p+q)
i=1 |ei |

7 Set β̄t = ηt/1 − ηt where ηt = ∑p+q
i=1 wt

i e
t
i and

βt = q

(p + q)
+ t

(S − 1)
(1 − q

(p + q)
).

8 Update the weights as:

wt+1
i =

⎧
⎪⎨

⎪⎩

wt
i β̄t

eti α

Zt
, 1 ≤ i ≤ p

wt
i β

1−eti
t α

Zt
, p ≤ i ≤ (p + q)

9 where Zt is sum of sample weights
10 end for
11 return h f where f = argmini errori

3.1.2 Weight update strategy

We present S- TrAdaBoost.R2 in Algorithm 2, where
we hypothesize that by updating the target weights more
aggressively, the prediction model is able to mitigate the
source distribution bias. This is especially useful for dis-
similar source and target domain distributions, as well as
when |XS| � |XT |. We also note that S- TrAdaBoost.R2
does not employ AdaBoost.R2’ [50], a modified version
of AdaBoost.R2 where the weights of source instances
are frozen and the weights of target instances are updated
based on the reweighing approach used by AdaBoost.R2.
However, applying highly focused domain adaptation by
freezing weights of source instances can greatly reduce the
generalizability of the model, as performed in the previous
technique, TTR2. For this reason, our approach penalizes
both the source domain and target domain instances allowing
for a balanced weighing. Hence, in S- TrAdaBoost.R2, the
hypothesis is obtained by using the AdaBoost.R2 method-
ology initially. Theweights for the instances are then updated
iteratively using the following weight equation,

wt+1
i =

⎧
⎪⎨

⎪⎩

wt
i β̄t

eti α

Zt
, 1 ≤ i ≤ p

wt
i β

1−eti
t α

Zt
, p ≤ i ≤ (p + q)

In the above equation, β̄t = ηt/1 − ηt such that ηt =
∑(p+q)

k=1 wt
i e

t
i , and Zt = ∑(p+q)

k=1 wiβt indicates the sum of
sample weights. For the above weighing strategy, the source
domain instances are penalized more aggressively with both
β and ei depending on instance residual compared to the
target domain instanceswith constantβ. This allows for a bal-
anced weighing where both domain instances are penalized
with the target instance weighing being slower compared to
the source instance weighing to balance the skewness caused
by a large number of source instances. Hence, although the
source instances are penalizedmore than target instances, the
instance weighing is still not as aggressive as in the prede-
cessor methodology, TTR2 which can lead to overfitting on
the dataset.

3.1.3 Time complexity for S-TRADABOOST.R2

The time complexity of the S- TrAdaBoost.R2 can be
divided into four parts:

1. Time complexity of importance sampling (O1)
2. Time complexity of the weak hypothesis (O2)
3. Time complexity of computing the error rate in S-

TrAdaBoost.R2 (O3)
4. Time complexity of the second stage of

S- TrAdaBoost.R2 (O4).
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For S iterations, time complexity can be defined as O(S ∗
(O2 + O3 + O4)). For our experiments, we chose a decision
tree as the base learner. The time complexity for creating
a decision tree is O(d ∗ N 2 ∗ logN ) (O2), where d is the
dimension of the dataset, N is the number of samples, and
each decision is taken in O(logN ) time. The time complexity
of computing adjusted error combinedwith theweight update
process (O3), does not increase more than O(N 2). Finally,
the time complexity of computing the second stage of the S-
TrAdaBoost.R2 is similar to producing a weak hypothesis
(O4). Hence, the time complexity over S iterations is given
as follows:

O(S ∗ (d ∗ N 2 ∗ logN + N + d ∗ N 2 ∗ logN ))

= O(2 ∗ S ∗ d ∗ N 2 ∗ logN + S ∗ N ))

= O(S ∗ d ∗ N 2 ∗ logN ))

For the k-center sampling, the time complexity is O(N 2)

for calculating closeness using the k-means clustering, as
well as usingManhattan distance for finding the most similar
source instances. Hence, the total time complexity for S-
TrAdaBoost.R2 can be calculated as follows:

O(S ∗ d ∗ N 2 ∗ logN + N 2) = O(S ∗ d ∗ N 2 ∗ logN )

3.2 Complexity of distribution

Domain-agnostic characterizations of dataset complexity are
surprisingly uncommon. Fernandez et al. [24] present a char-
acterization based on Shannon entropy, but this does not
extend to the continuous, often real-valued domains of many
real-world datasets [7]. Other intuitivemeasures such as sort-
ing datasets by the number of features or self-similarity donot
reliably capture types of datasets that we observed as being
especially prone to negative transfer. The heterogeneity and
complexity of datasets usually determine the model perfor-
mance.While the heterogeneity of real-world datasets can be
outlined as a factor of their multi-source and spatiotempo-
ral character, this might not be true for their complexity. Ho
et al. [31] proposed metrics to measure complexity for clas-
sification datasets. Maciel et al. [41] extended that work for
regression datasets which stemmed from the work done by
Lorena et al. [38] that utilizes meta-features as a measure of
complexity. In the following sections, we discuss and apply
the measures provided by Maciel et al. [41] to characterize
the complexity of regression datasets.

3.2.1 Collective feature efficiency (CFE ): correlation measure

The correlation measure determines the highly correlated
predictor to the target variable and fits a linear regressor to
find its residuals. All the instances having residual less than a

certain threshold (ε ≤ 0.1) are discarded and the remaining
instances are used to determine the next highly correlated
predictor. The process is repeated until the complete fea-
ture space has been visited. Maciel et al. [41] describes the
measure as the Collective Feature Efficiency (CFE ) which is
expressed as follows:

CFE = 1 −
∑

k

Nk

N

where Nk is the number of instances that are removed (using
the set threshold), N is the total number of instances and k
is the feature. Higher values for CFE indicate more complex
problems.

3.2.2 Distance from linear function (DL): linearity measure

The linearity measure sums the absolute values of residuals
when a multiple linear regressor is used as the learner [41].
It is expressed as a distance measure (DL ) and is quantified
as follows:

DL = 1 −
N∑

i=1

Ri

N

where Ri are the residues and N is the sample size. Lower
values indicate a simpler distribution.

3.2.3 Input distribution (DI): smoothness measure

The smoothness measure determines the smoothness of the
distribution by ordering the predictor values in ascending
order with regard to the output variable. It then finds the
distance (L2 Norm) between each pair of instances [41].
Lower values mean a simpler distribution, indicating that
the instances in input space are closer to each other, leading
to a smooth distribution. It is expressed as follows:

DI = 1

N

N∑

i=2

‖xi − xi−1‖

where N is the sample size and ‖.‖ is the Euclidean distance.

4 Evaluation

For our experiments,we evaluateS- TrAdaBoost.R2 against
other competitive transfer learning methodologies such
as TTR2 [50], KMM.TL [32], KLIEP.TL [57] and IW-
KRR.TL [27] known to perform well for regression-based
instance transfer learning problems. SinceTTR2 is the prede-
cessor for S- TrAdaBoost.R2, we define it as the baseline
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Table 1 Dataset statistics [Tr: Training, Tt: Test, PM
C : predictor] and complexity (Sect. 3.2)

Concrete Housing Auto Ailerons Elevators Abalone Kinematics C.Activity

Shape (1030, 9) (506, 14) (392, 8)
Tr: (7154, 41)
Tt: (6596, 41)

Tr: (8572, 19)
Tt: (7847, 19)

(4177, 9) (8192, 9) (8192, 22)

Target Strength medv mpg Goal Goal Rings y usr

PM
C Cement nox h.power None None weight theta7 pgin

CFE 0.66 0.39 0.51 0.47 0.59 0.69 0.70 0.36

DL 0.20 0.29 0.24 0.26 0.32 0.27 0.19 0.36

DI 0.71 0.90 0.58 0.68 0.59 0.51 1.08 0.58

Bold represents datasets with the highest complexity

algorithm for comparison. The decision tree regressor was
chosen as the base learner for thesemethodologies. For TTR2
and S- TrAdaBoost.R2, the following values were con-
sidered: S (no. of steps)=30, F (CV-folds)=10, learning
rate=0.1 and a squared loss. Similar values were used by
Pardoe et al. [50] for their study on regression boosting. For
the remaining algorithms, we used the default values for the
parameters. The values were chosen to maintain generaliz-
ability of the predictions across the algorithm. They were
derived using multiple experiments and iterations involving
parameter tuning, and were judged to not be biased toward a
single model to the best of our knowledge. The results along
with the ablation study are presented in the following sec-
tions.
Datasets We chose 8 standard regression datasets from the
UCImachine learning repository [3] as shown inTable 1.UCI
datasets were divided into source, target, and test sets using
the splitting methodology used by Pardoe et al. [50]. The
splits were made by identifying the feature moderately cor-
relatedwith the target variable, which allowed for concepts to
be significantly different from each other. The first split was
considered as the target dataset and the remaining splits as the
source dataset. This was done so that the source sample size
would be higher than the target sample size. The target dataset
was further split into training and testing datasets using a k-
fold split over 20 iterations. Our initial study showed that
the root mean squared loss (RMSE) on concrete, housing,
and automobile datasets were moderately varied for such a
division which allowed for robust predictions since it incor-
porated both generalizability for the models, as well as lesser
noise. Hence, we further extended the splitting methodology
to other datasets – abalone, kinematics, and computer activ-
ity. For ailerons and elevators datasets, the UCI repository
already consisted of a testing dataset. We took very few tar-
get instances so that the remaining larger dataset could be
used as the source dataset, which in turn imitates a real-
world transfer learning problem. Table 1 shows the dataset
statistics including their size, target variable, and predictor
used for correlation splitting. Although Concrete, Housing,
and Automobile are small sample datasets, they were used

to imitate the study by Pardoe et al. [50]. We compensated
for this imbalance using other large sample datasets with
varying heterogeneity. The complexity evaluation in Table 1
shows the complexity of dataset distributions based on vari-
ance (CFE ), smoothness (DI ), and linearity (DL ). For each
measure, a higher value indicates a more complex distribu-
tion. We observe that Kinematics has the highest complexity
(2 out of 3 times) when compared to the other datasets.
Ablation study We perform an ablation study where the
importance sampling technique is applied individually to
each transfer learning methodology. The goal of this study is
to induce fairness in comparison, given themodular nature of
importance sampling. Sampling is a two-phase methodology
that includes variance sampling and importance sampling.
The variance Sampling includes sprinkling the target dataset
with source instances in order to introduce noise and increase
the variance of the distribution. For the concrete, housing, and
automobile datasets, variance sampling was not applied due
to the low sample size. The importance sampling on the other
hand uses similarity measuring to find the source instances
most similar (important) to the target instances. The ablation
study exploits importance sampling for all themethodologies
and variance sampling for larger datasets.

4.1 Results

We implemented the experiments on an HPC cluster with 16
processors and 128 GB RAM. Any required short supple-
mental processing was performed on personal laptops with
half the number of processors and RAM. The number of
cross-validation folds was 20 for the datasets. The distri-
bution of prediction values is shown in the box-plot Fig. 2.
We observe that S- TrAdaBoost.R2consistently performs
well, with low RMSE as well as a high R-squared score.
However, this is not true for other methodologies, especially
IW- KRR.TL and TTR2 which, although they sometimes
outperform S- TrAdaBoost.R2, also fluctuate highly in
their performance. Example IW- KRR.TL is the most opti-
mal model for automobile, abalone, and kinematics datasets
as observed through its mean RMSE and R-squared values.
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Fig. 2 Comparison of transfer learning algorithms—TRADA: TTR2,
STRADA: S- TrAdaBoost.R2, KMM: KMM.TL, and
KLIEP: KLIEP.TL, IWKRR: IW- KRR.TL, where the RMS error
and R-squared score is calculated over 20 iterations. The Interquartile
Range (IQR), mean value (marker: yellow “X”), and median value

(marker: red line) for each algorithm over the iterations have been
highlighted. The datasets for which S- TrAdaBoost.R2 performs
particularly well are marked as well (marker: purple) (color figure
online)
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Table 2 Ablation study Ailerons Elevators Abalone Kinematics C.Activity

RMSE R2 RMS R2 RMS R2 RMS R2 RMS R2

TRADA 0.00023 0.65 0.0042 0.38 2.14 0.40 0.18 0.47 2.98 0.92

STRADA 0.00018 0.79 0.0030 0.81 2.02 0.43 0.18 0.51 2.48 0.94

KMM 0.00029 0.46 0.0049 0.31 2.73 0.06 0.27 0.08 11.30 0.17

KLIEP 0.00026 0.58 0.0043 0.42 2.76 0.10 0.26 0.10 11.09 0.22

IWKRR 0.00025 0.63 0.0021 0.81 1.99 0.41 0.10 0.84 8.77 0.66

Bold represents techniques with the lowest RMSE and highest R2 score (i.e. best prediction performance)

But it is not consistent in its performance as observed for
computer activity, ailerons, and elevators datasets, where it
fluctuates highly in its mean and variance over the iterations.
However, S- TrAdaBoost.R2 performs consistently well
for all of the datasets and comes a close second in thekinemat-
ics dataset, where IW- KRR.TL outperforms the competing
methodologies by a high margin. Similarly, for TTR2, we
observe that it performs well (RMSE score) on concrete and
abalone datasets compared to S- TrAdaBoost.R2, but its
performance is not consistent as observed for ailerons and
elevators datasets.We consider TTR2 to be our baseline algo-
rithm for this study primarily because it is the predecessor of
S- TrAdaBoost.R2 and observe that S- TrAdaBoost.R2
outperforms TTR2 75% of the times in the case of loss mea-
sure, and 100% when measured for correlation accuracy.

Considering that the importance sampling is a pre-domain
adaptation methodology and should not be limited to just
S- TrAdaBoost.R2, we conduct an Ablation study as
shown in Table 2. We observe minimal improvement in
the performance of TTR2 and IW- KRR.TL and find that
S- TrAdaBoost.R2 performs consistently well (4 out of
5 times). Table 2 shows that IW- KRR.TL has competi-
tive scores with regard to S- TrAdaBoost.R2; however, it
has the same inconsistent performance as observed in the
comparative study presented in Fig. 2. Also, TTR2 does not
show any improvement except for a similar RMSE score to
S- TrAdaBoost.R2 for the kinematics dataset. However,
IW- KRR.TL easily outperforms all other methodologies for
the kinematics dataset. It should also be noted that in both
studies, the remaining algorithms KMM.TL and KLIEP.TL
performed quite poorly compared to the other methodolo-
gies and showed no apparent sign of improvement in either
case. Hence, we can say that S- TrAdaBoost.R2 has shown
itself to be consistent among all the measures, adapting more
robustly to more complex and varying distribution datasets.

5 Discussion

Since S- TrAdaBoost.R2 is a successor to TTR2, we use
TTR2 as the baseline methodology and observe that S-
TrAdaBoost.R2 outperforms it 7 out of 8 times during the

comparative study. We also note that TTR2 shows no signifi-
cant improvement during the ablation study. This justifies the
steady performance of S- TrAdaBoost.R2, where it consis-
tently has optimal RMSE and R-squared scores during the
comparative and ablation studies. The ablation study is used
to justify how importance sampling is useful when combined
with the learning methodology for S- TrAdaBoost.R2.
This is due to the balanced weighing complimenting the
source domain sampling methodology. We find that for
relatively complex datasets such as concrete, elevators, kine-
matics, and c.activity (complexity analyzed in Table 1),
S- TrAdaBoost.R2 performswell onmost of them (3 out of
4 times), falling short only in the case of kinematics dataset
when compared to IW- KRR.TL methodology.

It should benoted that both the training error and the gener-
alization error of a similar problem space have been analyzed
thoroughly in Freund et al. [26], and this analysis is fur-
ther known to apply to TrAdaBoost.R2 [50], a predecessor
to S- TrAdaBoost.R2. The objective function for transfer
learning involves minimizing the loss, minh{L(h) + λη},
where η is the regularization function, and λ is the regu-
larization constant for the loss function L. We hypothesize a
function h ∈ H thatmaps training instances, predictor x ∈ X
to target y ∈ Y in the target domain TT . Hence, the instance
transfer methodology tries to minimize the weighted loss of
target and source domain [63] (L(h) = LT (h) + LS(h)).
Since S- TrAdaBoost.R2 relies on using AdaBoost.R2
unlike TTR2 [50], it has increased generalizability as it
avoids overfitting while assigning balanced source and target
weights.

While S- TrAdaBoost.R2 has improved generalizability
by utilizing balanced reweighing and sampling method-
ologies, it can however be limited by the computational
overhead and poorly strategized implementation of the sam-
plingmethodologies. The importance samplingmethodology
can reduce the performance of transfer learning if the thresh-
old for sampling is high, i.e. very few source domain
instances are selected. Furthermore, for large source domain
datasets (> 105), sampling methodologies (importance sam-
pling and variance sampling) cause additional computational
overhead. Hence, while these methodologies are simpler to
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implement, the initial and sampled instances affect the per-
formance of our approach.

6 Conclusion

We introduce S- TrAdaBoost.R2, which uses importance
sampling combined with an unrestricted weight update strat-
egy to improve performance for the domain of instance
transfer learning by an average of 12% across all datasets,
and 13% in sufficiently complex datasets when compared
to its predecessor TTR2. To better characterize the datasets
that S- TrAdaBoost.R2 performs well on, we utilize com-
plexity measures [41], CFE , DL and DI that employ feature
correlation and fitting a linear regressor to compute the
complexity for the datasets. Hence, we can conclude that
S- TrAdaBoost.R2 would be well suited for complex
real-world datasets that range in distributions, as well as
uniformity of features. While the functional improvement
is large, the additional overhead and physical changes we
propose to TTR2 are modest enough that we expect S-
TrAdaBoost.R2 as a replacement for TTR2 and other
instance transfer methodologies in scientific data analysis
pipelines.

7 Future work

In the future, we want to expand our methodology for
not only instance transfer learning methodologies but also
feature-transfer learning [1, 2, 33] as well as parameter-
transfer learning methodologies [37, 56]. Although boosting
transfer methodologies are simpler to understand than their
deep learning counterparts, the user may suffer a trade-off
in prediction accuracy for simplicity, which is not always
preferred. We also plan to compare boosting-based instance-
transfer learning methodologies to deep transfer learning
methodologies [70]. We plan to explore a methodology that
uses performance gap minimization to improve the boost-
ing in transfer learning, extending on the work of [63]. The
complexity of distribution also plays an important part in
providing a glimpse of how the distributions and predic-
tions vary. Hence, we plan to investigate other implications
of characterizing data by cross-feature complexity, particu-
larly techniques involving correlation to optimal tree depth
for network learning models of data.
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