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Problem: Air Pollution Monitoring in Data-Scarce Regions

How Small is PM 2.5

PM, ¢ (Particulate Matter) poses public health risk
* It contains particles < 2.5 microns = can penetrate lungs and bloodstream.
» Effects disproportionately higher in densely populated regions.

Need for ground sensors in high-density and rural regions.

However, this infrastructure can be unfeasible
* Dense sensor networks are costly to install.
* Developing regions lack critical investment.

Case Study: Lima, Peru

* Second most polluted city in the Americas.

* Only 10 ground sensors for entire metropolitan area.

* Sensors clustered in central Lima, leaving vast areas unmonitored.

Lima, Peru



Key Challenges

1. Spatial Irregularities

* Sparse sensor placement across the region.

* Uneven coverage - dense in populated centers, absent elsewhere.

2. Temporal Irregularities

 Temporal gaps in the collected data (missing daily values).

3. Distribution Imbalance

* Mostly moderate PM, ; levels in collected data

* Few high pollution (extreme) episodes.

 Imbalance creates non-lID data distribution.

Traditional machine learning models struggle with such data characteristics
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Research Question: Can We Build Self-Reliant Prediction
Models?

Q1 Can we avoid leveraging auxiliary technologies: data or sensors?

b 4 No Transfer Learning

* No transfer learning from other regions (Requires: Large-scale models). X NolLow-Cost Sensors

* No low-cost sensor deployments (Requires: Policy intervention).

Existing Sparse Sensors Only

* Use only existing sparse ground sensor data.

Q2 Does sensor placement affect ML model performance? Our Approach: Use Sparse Variational
Gaussian Processes (SVGPs) to generate
data points that spatially adapt to the
* How do models adapt to different spatial configurations for such region.

spatiotemporal settings?

* Can model performance be improved through strategic placement?

Before: Sparse Data After: SVGP Augmented




Why Sparse Variational Gaussian Processes?
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Gaussian Processes (GPs): °
* Non-parametric: Don't assume fixed data structure.
e Adapt to complex, non-IID data.

Spatial Dimension 2

Sparse Variational GPs
* Sparse: Use inducing points (M << N data points)
* Representative subset of the entire dataset.

Traditional GP
Uses All N Points
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Few Inducing Points Represent Many

Variational Inference: Approximate distributions via optimization
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* Opimize inducing points during training.
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* Adapt to underlying data structure.
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Inducing points can serve as synthetic training data that generalize across
sparse sensor networks
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Central Hypotheses

Hypothesis 1

Spatial Adaptation: Well-initialized inducing points spread over the sparse sensing region.
What does "spatial adaptation” mean?

* Inducing points start near training sensors (K-means centroids).

* During optimization, they migrate across the region.

* Final positions capture spatial structure of PM, ¢ distribution.

Hypothesis 2

Strategic Placement Matters: Strategic placement of sensors enables improved spatial adaptation.
Why does this matter?

* Better spatial adaptation - better generalization.

* Optimizes the future sensor deployment strategies.

* Allows for limited sensing infrastructure.



SVGP Methodology

Gaussian Process

Defines a distribution over functions, specified by a mean function m(x)and a covariance (kernel) function k(x’ x").

f(x)~GP(m(x), k(x,x’))

Sparse Variational Gaussian Processes

SVGP approximates the GP using a smaller set of M <<N inducing points, reducing computation.

Inducing Points
* Learnable points Z = {Zj}ﬂ‘-’il in input space.
* Function values at these points: U = f(Z)

* They summarize the dataset efficiently and allow sparse approximations.

Posterior approximation
Instead of the full GP posterior p(f | y) ,we use a variational distribution, g(u) over the inducing points as

q(f) = [p(f lu),qw),du



SVGP Methodology

Optimization via ELBO

Maximize Evidence Lower Bound (ELBO).

ELBO = Eq(pllogp (v | F)] — KLlq(w) 1l p(w)]
Train for 1500 epochs; inducing points adapt during training.

ELBO provides a tractable approximation of the full GP posterior.
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Experimental Setup

Dataset:
* Daily averaged PM, ; values of Lima [year: 2016; Shape: (2419, 16)].
e 10 ground sensors in total.
» 16 features (meteorological, topographical, pollution, spatial, temporal).

Evaluation Strategy:
* 5 randomized train-test splits.
* 4 sensors for training, 6 sensors for testing.
* Tests model's ability to predict at unseen locations.

Baseline Models:

Gaussian Process Regressor (GPR)
* RBF + Constant + White Kernel [kgpp(x,x") = afzexp(—
* 10 optimizer restarts

Gradient Boosting
* Learning rate = 0.05, 1000 estimators

Lasso Regression
* a=0.5
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) +kconst(x, x) = ¢+ kyhite(x, x) = 03, 8, 1]

Metrics: RMSE (Root Mean Squared Error)



Results

Split 1: Sparse Sensor Configuration

* Training sensors (red) widely distributed.

* |Initial inducing points (yellow) clustered near sensors.

e Optimized inducing points (purple) spread northward.

Split 2: Linear Sensor Configuration
* Training sensors nearly linearly arranged.
* Limited spatial spread of inducing points.

e Growth restricted around sensor locations.

Key Observation: Sensor placement directly affects inducing point adaptation

* Sparse, well-distributed sensors - better spatial coverage.

* Linear/clustered sensors - limited adaptation.

Validation: This confirms our hypothesis about strategic sensor placement.

Sparse Sensor Configuration

Split1

Linear Sensor Configuration

W Train Sensors
@ Test Sensors

Initial Inducing Points
% Final Inducing Points

Split 2

Model RMSE

SVGP 10.13

Gaussian Process 11.24

Gradient Boosting 11.25

Lasso Regression 11.30 10




Future Directions

1. Ablation studies with ML models.
e Use the inducing points with alternative ML models to compare prediction accuracy.

2. Interpolation models to determine PM, ; values at inducing point locations.
* Interpolate PM2.5 using kriging, etc, to compare their performance to SVGPs.

3. Generative Modeling for Synthetic Data
* Use optimized inducing points with generative architectures.
* Synthesize additional training data to reduce spatial irregularities.

4. Low-Cost Sensors for Extreme Events
* Deploy targeted low-cost sensors in high-PM2.5 hotspots.
* Capture underrepresented extreme values.

5. Ground-sensor Placement
* Use inducing points to identify high-uncertainty regions.
* Active learning: where new data helps most. | Adaptive sensing: where new sensors help most.
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Conclusions & Impact

Key Contributions

Spatial Adaptation Validated

* Inducing points spread across sparse sensing regions
e Capture underlying PM2.5 distribution structure
Strategic Placement Matters

* Well-distributed sensors enable better adaptation

* Informs future infrastructure deployment

Strong Performance

 10% in RMSE

* No auxiliary data or additional sensors needed

Practical Impact:

* Scalable framework for developing regions with limited resources
* Reduces infrastructure costs while maintaining prediction accuracy
e Applicable to other environmental monitoring challenges



Thank you! Questions?

Contact: shrey.gupta@bc.edu

Web: shrey.gupta.github.io

Code Available: github.com/shrey-gupta/svgps-for-low-sensor
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