Spatially Adaptive PM_{2.5} Estimation in Low-Sensor Regions using Variational Gaussian Processes

Authors: Shrey Gupta¹, Avani Wildani², Yang Liu³
¹Boston College, ²Cloudflare, ³Emory University
DSAA, 2025, (11/09/2025)

Problem: Air Pollution Monitoring in Data-Scarce Regions

PM_{2.5} (Particulate Matter) poses **public health risk**

- It contains particles < 2.5 microns → can penetrate lungs and bloodstream.
- Effects disproportionately higher in densely populated regions.

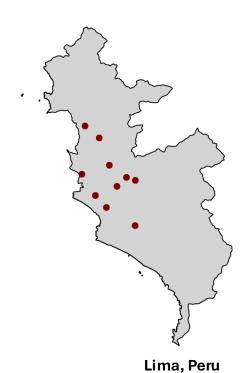
Need for ground sensors in high-density and rural regions.

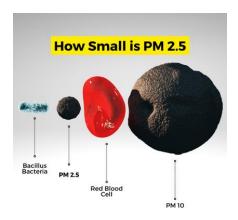
However, this infrastructure can be unfeasible

- Dense sensor networks are costly to install.
- Developing regions lack critical investment.

Case Study: Lima, Peru

- Second most polluted city in the Americas.
- Only 10 ground sensors for entire metropolitan area.
- Sensors clustered in central Lima, leaving vast areas unmonitored.





Key Challenges

1. Spatial Irregularities

- Sparse sensor placement across the region.
- Uneven coverage dense in populated centers, absent elsewhere.

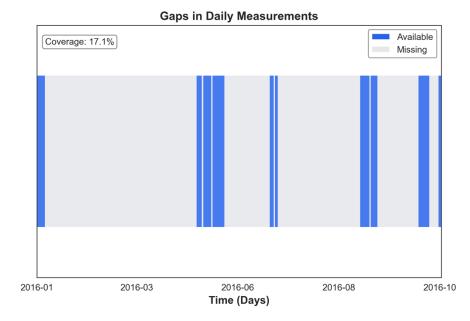
2. Temporal Irregularities

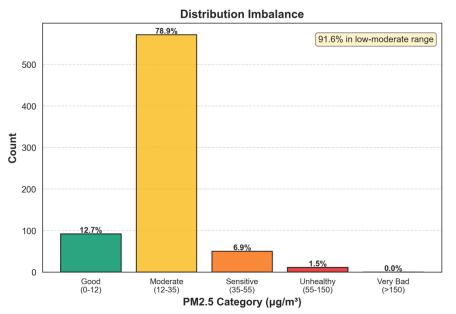
Temporal gaps in the collected data (missing daily values).

3. Distribution Imbalance

- Mostly moderate PM_{2.5} levels in collected data
- Few high pollution (extreme) episodes.
- Imbalance creates non-IID data distribution.

Traditional machine learning models struggle with such data characteristics





Research Question: Can We Build Self-Reliant Prediction Models?

Q1 Can we avoid leveraging auxiliary technologies: data or sensors?

- No transfer learning from other regions (Requires: Large-scale models).
- No low-cost sensor deployments (Requires: Policy intervention).
- Use only existing sparse ground sensor data.

Q2 Does sensor placement affect ML model performance?

- Can model performance be improved through strategic placement?
- How do models adapt to different spatial configurations for such spatiotemporal settings?



No Transfer Learning

Our Approach: Use Sparse Variational Gaussian Processes (SVGPs) to generate data points that spatially adapt to the region.

Why Sparse Variational Gaussian Processes?

Gaussian Processes (GPs):

- Non-parametric: Don't assume fixed data structure.
- Adapt to complex, non-IID data.

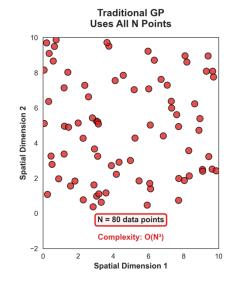
Sparse Variational GPs

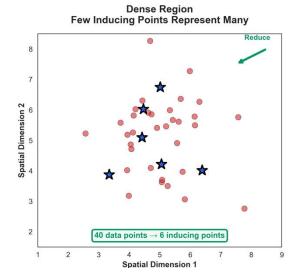
- Sparse: Use inducing points (M << N data points)
- Representative subset of the entire dataset.

Variational Inference: Approximate distributions via optimization

- Opimize inducing points during training.
- Adapt to underlying data structure.

Inducing points can serve as synthetic training data that generalize across sparse sensor networks





Central Hypotheses

Hypothesis 1

Spatial Adaptation: Well-initialized inducing points spread over the sparse sensing region.

What does "spatial adaptation" mean?

- Inducing points start near training sensors (K-means centroids).
- During optimization, they migrate across the region.
- Final positions capture spatial structure of PM_{2.5} distribution.

Hypothesis 2

Strategic Placement Matters: Strategic placement of sensors enables improved spatial adaptation.

Why does this matter?

- Better spatial adaptation → better generalization.
- Optimizes the future sensor deployment strategies.
- Allows for limited sensing infrastructure.

SVGP Methodology

Gaussian Process

Defines a distribution over functions, specified by a mean function m(x) and a covariance (kernel) function k(x, x'). $f(x) \sim GP(m(x), k(x, x'))$

Sparse Variational Gaussian Processes

SVGP approximates the GP using a smaller set of M << N inducing points, reducing computation.

Inducing Points

- Learnable points $Z = \{z_j\}_{j=1}^M$ in input space.
- Function values at these points: u = f(Z).
- They summarize the dataset efficiently and allow sparse approximations.

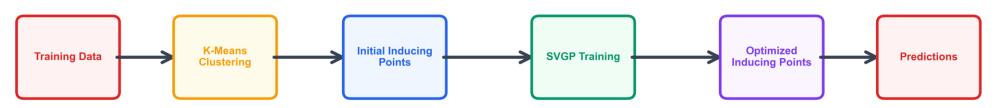
Posterior approximation

Instead of the full GP posterior $p(f \mid y)$,we use a variational distribution, q(u) over the inducing points as $q(f) = \int p(f \mid u), q(u), du$

SVGP Methodology

Optimization via ELBO

- Maximize Evidence Lower Bound (ELBO).
- ELBO = $\mathbb{E}_{q(f)}[\log p(y \mid f)] \text{KL}[q(u) \mid\mid p(u)]$
- Train for 1500 epochs; inducing points adapt during training.
- ELBO provides a tractable approximation of the full GP posterior.



SVGP Training Pipeline

Experimental Setup

Dataset:

- Daily averaged PM_{2.5} values of Lima [year: 2016; Shape: (2419, 16)].
- 10 ground sensors in total.
- 16 features (meteorological, topographical, pollution, spatial, temporal).

Evaluation Strategy:

- 5 randomized train-test splits.
- 4 sensors for training, 6 sensors for testing.
- Tests model's ability to predict at unseen locations.

Baseline Models:

Gaussian Process Regressor (GPR)

- RBF + Constant + White Kernel $\left[k_{\mathsf{RBF}}(x,x') = \sigma_f^2 \exp\left(-\frac{|x-x'|^2}{2\ell^2}\right) + k_{\mathsf{Const}}(x,x') = c + k_{\mathsf{White}}(x,x') = \sigma_n^2, \delta_{x,x'}\right]$
- 10 optimizer restarts

Gradient Boosting

• Learning rate = 0.05, 1000 estimators

Lasso Regression

• $\alpha = 0.5$

Metrics: RMSE (Root Mean Squared Error)

Results

Split 1: Sparse Sensor Configuration

- Training sensors (red) widely distributed.
- Initial inducing points (yellow) clustered near sensors.
- Optimized inducing points (purple) spread northward.

Split 2: Linear Sensor Configuration

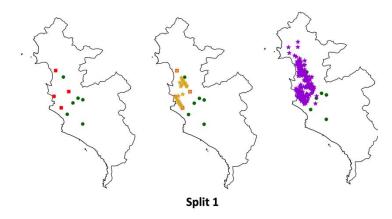
- Training sensors nearly linearly arranged.
- Limited spatial spread of inducing points.
- Growth restricted around sensor locations.

Key Observation: Sensor placement directly affects inducing point adaptation

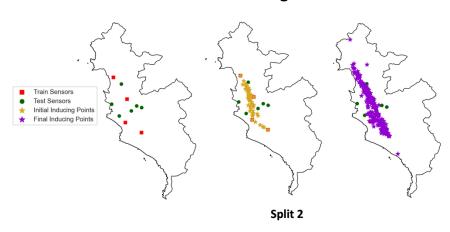
- Sparse, well-distributed sensors → better spatial coverage.
- Linear/clustered sensors → limited adaptation.

Validation: This confirms our hypothesis about strategic sensor placement.

Sparse Sensor Configuration



Linear Sensor Configuration



Model	RMSE
SVGP	10.13
Gaussian Process	11.24
Gradient Boosting	11.25
Lasso Regression	11.30

Future Directions

1. Ablation studies with ML models.

• Use the inducing points with alternative ML models to compare prediction accuracy.

2. Interpolation models to determine PM_{2.5} values at inducing point locations.

Interpolate PM2.5 using kriging, etc, to compare their performance to SVGPs.

3. Generative Modeling for Synthetic Data

- Use optimized inducing points with generative architectures.
- Synthesize additional training data to reduce spatial irregularities.

4. Low-Cost Sensors for Extreme Events

- Deploy targeted low-cost sensors in high-PM2.5 hotspots.
- Capture underrepresented extreme values.

5. Ground-sensor Placement

- Use inducing points to identify high-uncertainty regions.
- Active learning: where new data helps most. | Adaptive sensing: where new sensors help most.

Conclusions & Impact

Key Contributions

Spatial Adaptation Validated

- Inducing points spread across sparse sensing regions
- Capture underlying PM2.5 distribution structure

Strategic Placement Matters

- Well-distributed sensors enable better adaptation
- Informs future infrastructure deployment

Strong Performance

- 10% in RMSE
- No auxiliary data or additional sensors needed

Practical Impact:

- Scalable framework for developing regions with limited resources
- Reduces infrastructure costs while maintaining prediction accuracy
- Applicable to other environmental monitoring challenges

Thank you! Questions?

Contact: shrey.gupta@bc.edu

Web: shrey.gupta.github.io

Code Available: github.com/shrey-gupta/svgps-for-low-sensor