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Problem: Air Pollution Monitoring in Data-Scarce Regions

PM2.5 (Particulate Matter) poses public health risk

• It contains particles < 2.5 microns → can penetrate lungs and bloodstream.

• Effects disproportionately higher in densely populated regions.

Need for ground sensors in high-density and rural regions.

However, this infrastructure can be unfeasible 

• Dense sensor networks are costly to install.

• Developing regions lack critical investment.

Case Study: Lima, Peru

• Second most polluted city in the Americas.

• Only 10 ground sensors for entire metropolitan area.

• Sensors clustered in central Lima, leaving vast areas unmonitored.
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Key Challenges

1. Spatial Irregularities

• Sparse sensor placement across the region.

• Uneven coverage - dense in populated centers, absent elsewhere.

2. Temporal Irregularities

• Temporal gaps in the collected data (missing daily values).

3. Distribution Imbalance

• Mostly moderate PM2.5 levels in collected data

• Few high pollution (extreme) episodes.

• Imbalance creates non-IID data distribution.

Traditional machine learning models struggle with such data characteristics
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Research Question: Can We Build Self-Reliant Prediction 
Models?
Q1 Can we avoid leveraging auxiliary technologies: data or sensors?

• No transfer learning from other regions (Requires: Large-scale models).

• No low-cost sensor deployments (Requires: Policy intervention).

• Use only existing sparse ground sensor data.

Q2 Does sensor placement affect ML model performance?

• Can model performance be improved through strategic placement?

• How do models adapt to different spatial configurations for such 
spatiotemporal settings?

Our Approach: Use Sparse Variational 
Gaussian Processes (SVGPs) to generate 
data points that spatially adapt to the 
region.
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Why Sparse Variational Gaussian Processes?

Gaussian Processes (GPs):

• Non-parametric: Don't assume fixed data structure.

• Adapt to complex, non-IID data.

Sparse Variational GPs

• Sparse: Use inducing points (M << N data points)

• Representative subset of the entire dataset.

Variational Inference: Approximate distributions via optimization

• Opimize inducing points during training.

• Adapt to underlying data structure.

Inducing points can serve as synthetic training data that generalize across 
sparse sensor networks
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Central Hypotheses

Hypothesis 1 

Spatial Adaptation: Well-initialized inducing points spread over the sparse sensing region.

What does "spatial adaptation" mean?

• Inducing points start near training sensors (K-means centroids).

• During optimization, they migrate across the region.

• Final positions capture spatial structure of PM2.5 distribution.

Hypothesis 2 

Strategic Placement Matters: Strategic placement of sensors enables improved spatial adaptation.

Why does this matter?

• Better spatial adaptation → better generalization.

• Optimizes the future sensor deployment strategies.

• Allows for limited sensing infrastructure.
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SVGP Methodology

Gaussian Process

Defines a distribution over functions, specified by a mean function 𝑚 𝑥 and a covariance (kernel) function 𝑘 𝑥 𝑥′ .
𝑓 𝑥 ~𝐺𝑃 𝑚 𝑥 , 𝑘 𝑥, 𝑥′

Sparse Variational Gaussian Processes

SVGP approximates the GP using a smaller set of M << N inducing points, reducing computation.

Inducing Points
• Learnable points 𝑍 = {𝑧𝑗}𝑗=1

𝑀  in input space.

• Function values at these points: 𝑢 = 𝑓 𝑍 .

• They summarize the dataset efficiently and allow sparse approximations.

Posterior approximation
Instead of the full GP posterior 𝑝 𝑓 ∣ 𝑦  ,we use a variational distribution, 𝑞 𝑢  over the inducing points as

  𝑞 𝑓 = ׬ 𝑝 𝑓 𝑢 , 𝑞 𝑢 , 𝑑𝑢
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SVGP Methodology

Optimization via ELBO

• Maximize Evidence Lower Bound (ELBO).

• ELBO = 𝔼𝑞 𝑓 𝑙𝑜𝑔 𝑝 𝑦 ∣ 𝑓 − KL 𝑞 𝑢 ∣∣ 𝑝 𝑢

• Train for 1500 epochs; inducing points adapt during training.

• ELBO provides a tractable approximation of the full GP posterior.
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Experimental Setup
Dataset:

• Daily averaged PM2.5 values of Lima [year: 2016; Shape: (2419, 16)].
• 10 ground sensors in total.
• 16 features (meteorological, topographical, pollution, spatial, temporal).

Evaluation Strategy:
• 5 randomized train-test splits.
• 4 sensors for training, 6 sensors for testing.
• Tests model's ability to predict at unseen locations.

Baseline Models:
 Gaussian Process Regressor (GPR) 

• RBF + Constant + White Kernel [𝑘RBF 𝑥, 𝑥′ = 𝜎𝑓
2exp −

|𝑥−𝑥′|2

2ℓ2  + 𝑘Const 𝑥, 𝑥′ = 𝑐 + 𝑘White 𝑥, 𝑥′ = 𝜎𝑛
2, 𝛿𝑥,𝑥′]

• 10 optimizer restarts
 Gradient Boosting 

• Learning rate = 0.05, 1000 estimators
 Lasso Regression 

• α = 0.5

Metrics: RMSE (Root Mean Squared Error) 
9



Results

Split 1: Sparse Sensor Configuration

• Training sensors (red) widely distributed.

• Initial inducing points (yellow) clustered near sensors.

• Optimized inducing points (purple) spread northward.

Split 2: Linear Sensor Configuration

• Training sensors nearly linearly arranged.

• Limited spatial spread of inducing points.

• Growth restricted around sensor locations.

Key Observation: Sensor placement directly affects inducing point adaptation

• Sparse, well-distributed sensors → better spatial coverage.

• Linear/clustered sensors → limited adaptation.

Validation: This confirms our hypothesis about strategic sensor placement.

Sparse Sensor Configuration

Linear Sensor Configuration
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Model RMSE
SVGP 10.13

Gaussian Process 11.24

Gradient Boosting 11.25

Lasso Regression 11.30



Future Directions

1. Ablation studies with ML models.

• Use the inducing points with alternative ML models to compare prediction accuracy.

2. Interpolation models to determine PM2.5 values at inducing point locations.

• Interpolate PM2.5 using kriging, etc, to compare their performance to SVGPs.

3. Generative Modeling for Synthetic Data

• Use optimized inducing points with generative architectures.

• Synthesize additional training data to reduce spatial irregularities.

4. Low-Cost Sensors for Extreme Events

• Deploy targeted low-cost sensors in high-PM2.5 hotspots.

• Capture underrepresented extreme values.

5. Ground-sensor Placement

• Use inducing points to identify high-uncertainty regions.

• Active learning: where new data helps most. | Adaptive sensing: where new sensors help most.
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Conclusions & Impact

Key Contributions

Spatial Adaptation Validated

• Inducing points spread across sparse sensing regions

• Capture underlying PM2.5 distribution structure

Strategic Placement Matters

• Well-distributed sensors enable better adaptation

• Informs future infrastructure deployment

Strong Performance

• 10% in RMSE

• No auxiliary data or additional sensors needed

Practical Impact:

• Scalable framework for developing regions with limited resources

• Reduces infrastructure costs while maintaining prediction accuracy

• Applicable to other environmental monitoring challenges
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Thank you! Questions? 

Contact: shrey.gupta@bc.edu 

Web: shrey.gupta.github.io

Code Available: github.com/shrey-gupta/svgps-for-low-sensor
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