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Abstract—Air pollution, particularly particulate matter 2.5
(PM2.5), poses a significant public health challenge in densely
populated developing regions. Moreover, deploying an extensive
ground sensor network to monitor PM2.5 accurately is econom-
ically unfeasible in such regions. To address this problem, we
utilize Sparse Variational Gaussian Process (SVGP) models to
generate approximate data using the limited ground sensor data.
Since SVGPs use computational approximators for Gaussian
Process modeling, we hypothesize that their inducing points can
be trained to adapt spatially, i.e., these points, when optimized,
can spread over the region of interest. Hence, well-initialized
inducing points allow SVGPs to model PM2.5 data by capturing
spatial variations of the region. We evaluate our hypothesis
using PM2.5 data from Lima, Peru, one of the most polluted
cities in the Americas, and with very few PM2.5 ground sensors.
Our experiments qualitatively validate our hypothesis of spatial
adaptation and provide a quantitative justification of improved
performance over the baseline models.

Index Terms—PM2.5 Modeling, Sparse Variational Gaussian
Processes

I. INTRODUCTION

Air pollution poses a significant public health concern,
with its impact most severe in densely populated regions [1].
Among various pollutants, the fine particulate matter (PM2.5)
constitutes the highest public health risk due to its small size
(< 2.5 microns), allowing it to penetrate the lungs as well
as enter the bloodstream [2]. Therefore, accurate monitoring
of PM2.5 is crucial for effective and informed policy deci-
sions for public health [3]. Such effective monitoring can be
achieved by either installing ground sensors or using satellite-
derived (remote sensing) measurements. However, proximity
to the ground generally improves accuracy for sensing, thereby
making the ground sensors a better option.

Installing a dense network of PM2.5 ground sensors across
a large geographical area is often economically unfeasible,
especially in developing regions or countries that are unwilling
to invest in such critical infrastructure [4], [5]. Hence, the little
data that gets collected using the sparse network of sensors
in such regions generally contains spatiotemporal irregular-
ities [6] and distribution imbalance [7], [8]. Spatiotemporal
irregularities refer to spatial and temporal variations in the
data collected from a sensing network. Spatial irregularities
arise due to the sparsity of sensor locations, while temporal
irregularities occur due to unsynchronized sampling at these
sensors. Distribution imbalance refers to data points being
unevenly distributed across the target variable. For example,

for a sparse network region, the data collected has mostly
moderate PM2.5 concentration levels, thereby having fewer
data points with high PM2.5 concentration levels.

These non-uniformities (irregularities and imbalance) af-
fect the underlying data structure, resulting in non-IID (non-
independent and identically distributed) characteristics, i.e.,
distortion of the relationships between features and the target
variable. Hence, the efficacy of the machine learning (ML)
models is reduced as they traditionally rely on big, context-
rich datasets for robust learning and prediction.

We pose two questions here: (i) Among the extensive
solutions to overcome data scarcity issues for sparse
networks, can we avoid leveraging auxiliary data or sensing
technologies to improve the prediction of machine learning
(ML) models (self-reliant models)? (ii) Are these self-
reliant models affected by the placement of ground sensors
in such scenarios? Can their performance be optimized if
the placement of the sensors is optimized?

Therefore, the proposed solution should be able to overcome
non-iid characteristics present in the data and improve the ML
model prediction by utilizing only the data collected from the
ground sensors. We propose using non-parametric ML models
that allow data augmentation to solve the non-iid and data
scarcity issues. Sparse Variational Gaussian Processes (SVGP),
a subset of Gaussian Process models, can be used to overcome
the above issues [9], [10]. A Gaussian Process is a probabilistic
model that places a distribution over all functions fitting the
observed data, and quantifies how likely each function is given
the data [11], [12]. Such behavior is termed non-parametric
because it does not assume a fixed structure of the data and,
therefore, does not assign a single function to the entire data
distribution. This allows them to adapt to complexities in data,
such as the non-iid characteristics of the data. In SVGPSs,
the sparse aspect addresses scalability issues as Gaussian
Processes are unfit for large datasets. SVGPs overcome this
by selecting a set of data points called inducing points that
are representative of the entire dataset. The variational aspect
allows them to approximate a distribution (make predictions)
using these inducing points.

Hence, in this work, we propose a new perspective on
Sparse Variational Gaussian Processes (SVGPs), arguing that
their inducing points can serve as synthetic training data points
that generalize for sparse sensor networks when approximated
using variational inference.



Hence, we answer the two posed questions by hypothesizing
and experimentally validating two theories associated with in-
ducing points of SVGPs: (i) Well-initialized inducing points
spread over the sparse sensing region and adapt to the
underlying data distribution. We term this phenomenon of
spreading as spatial adaptation. (ii) Strategic placement of
the sensors such that they have a large region of cover
allows for an improved spatial adaptation.

We evaluate these hypotheses using the PM2.5 data of
Lima, Peru, which has a sparse sensor network [13] (only 10
sensors). We validate our hypotheses by visualizing the spread
of inducing points at the end of the SVGP training. Moreover,
we compare the efficacy of this spread by comparing SVGPs
prediction accuracy to competitive regression models. Our
experiments show that the SVGP model outperforms the
second-best performing model by 84% and 10% for R2 and
RMSE scores, repsectively.

II. RELATED WORKS

We review prior studies that focus on ML models for
predicting PM2.5 for sparse sensor networks and Gaussian
Process models applied for PM2.5 and data-scarce scenarios.

A. Estimating PM2.5 for Sparse Sensor Network

To estimate PM2.5 in regions with sparse sensor networks,
two solutions can be incorporated – (i) Installing low-cost
sensors in the region in addition to the existing ground
sensors [4], (ii) Adopting transfer or meta-learning models
where data from alternate regions that have a dense sensor
network is incorporated to develop a robust ML model.

For the first case, deploying low-cost sensors can improve
the spatial coverage of the sensing network [14], [15]; how-
ever, studies have demonstrated that these low-cost sensors,
such as PurpleAir and more, often exhibit systematic biases
due to fluctuating environmental conditions like temperature,
humidity, and more. conditions [4], [16]. Hence, statistical
calibration models that incorporate these environmental con-
ditions as input are required for bias removal.

For the second case, transfer and meta-learning models
use auxiliary data from data-rich regions to develop robust
PM2.5 prediction models [14]. For example, Fong et al. [17],
Yao et al [18], Ma et al [19], and Yadav et al [20] use
transfer models that incorporate deep learning methods such as
Recurrent Neural Networks (RNN, Variational auto-encoders
(VAE), and Long-Short Term Memory with RNN (LSTM-
RNN) for time-series forecasting. They utilize ground sensor
networks from neighboring cities as source data to forecast
PM2.5, incorporating both the source data and historical values
of the target sensors for training.

In our work, we aim to use sparse-sensor networks without
relying on auxiliary data or additional sensors and predict on
unseen test data.

B. Gaussian Processes for PM2.5 Estimation

Gaussian processes (GPs) are powerful models for pre-
dicting PM2.5 concentrations, as their non-parametric, kernel-

based framework effectively captures complex spatial and tem-
poral dependencies [12], [21]. For example, Cheng et al. [22]
propose a GP-based model that predicts PM2.5 concentration at
test locations via spatial interpolation. Patel et al [12] introduce
a GP-based model that uses non-stationary spatiotemporal
kernels to predict air quality (PM2.5 and PM10 concentration
levels). Jang et al. [23] demonstrate that Gaussian Process
regression (GPR) outperforms linear and ARIMA models in
forecasting PM2.5 and PM10 concentrations over three-day
periods. However, these studies utilize a dense sensor network
for predicting PM2.5 and are unsuitable for sparse sensor
networks.

C. Gaussian Processes for Low-data Scenarios

Multiple recent studies have explored Gaussian processes
(GPs) and their variants for low-data scenarios, such that
these GP models act as transfer learning models for robust
predictions. Moreno-Muñoz et al. [24] introduce modular
variational GPs, an ensemble model that incorporates uncer-
tainty transfer without revisiting the source data. Tighineanu
et al. [25] unified hierarchical GP models for transfer learning
using Bayesian optimization, thereby improving the model’s
performance in low-data regimes. Urtasun et al. [26] proposed
a shared latent space GP framework that learns with few target
examples by transferring nonlinear representations. Karaletsos
et al. [27] introduce a hierarchical GP-based prior over the
neural network weights that can capture correlations among
weights as well as allow flexible encoding of inductive biases.
This improves uncertainty estimation and generalization in
deep learning models. However, these models are limited by
the need for auxiliary training data (source data for transfer).

III. METHODOLOGY

Gaussian Processes (GP) are non-parametric, kernel-based
models that can model complex data with non-iid character-
istics and also quantify uncertainty in the predictions. Uncer-
tainty quantification means that these models don’t just provide
a single predicted value but also a measure of confidence in
these values.

A regression problem can be represented by a function f :
Rd → R, where d is the dimensionality of the feature space. It
is said to follow a Gaussian Process (GP), if for a finite set of
input points {x1, . . . ,xN}, the function values at these points,
{f(x1), . . . , f(xN )}, look like they were drawn together from
a joint Gaussian distribution:

f(x) ∼ GP(m(x), k(x,x′)) (1)

where m(x) = E[f(x)] is the mean function (often set to
zero), and k(x,x′) = Cov(f(x), f(x′)) is the covariance
function (also the kernel), describes how much two function
values at different input points are related.

The prediction, yi for the above setting for the dataset
D = {(xi, yi)}Ni=1 where N is the number of samples can
be modeled using a latent function f(xi) and noise ϵi as,

yi = f(xi) + ϵi (2)



where ϵi ∼ N (0, σ2) and denotes a Gaussian distribution
with mean 0 and variance σ2.

We use equation 1, to model the observed values, y at input
points X and the predicted values, f∗ at test points X∗ as:[

y
f∗

]
∼ N

([
m
m∗

]
,

[
K+ σ2I KT

∗∗
K∗∗ K∗

])
, (3)

Where K, m, and K∗, m∗ are the kernel and mean matrices
of train (input) and test points, respectively. K∗∗ is the cross-
covariance between them. Hence, the predictions at test points
is represented as,

f∗ | X,y,X∗ ∼ N (f̄∗,Cov[f∗]), (4)

Sparse Variational Gaussian Processes (SVGP) are useful
in approximating Gaussian Processes by employing a set of
M inducing points where M ≪ N . These inducing points are
learned and are denoted as, Z = {zj}Mj=1. The predicted values
(latent function values) are represented as u = f(Z). Instead
of calculating the full posterior p(f | y), we approximate it
by using a simpler, and flexible distribution q(u), using the
inducing points. We approximate the posterior for q(u) as,

q(f) =

∫
p(f | u)q(u) du, (5)

This expresses the posterior distribution in terms of a simpler
(variational) distribution.

Since the full posterior, p(f | y), does not have a closed
form solution, the distributions q(u), and q(f) are introduced.
Then, variational inference is used to make these approximated
distributions fit the data. This is achieved by minimizing
the KL divergence between the approximated and the full
posterior, KL

(
q(f) ∥ p(f | y)

)
, which is the same as

maximizing the Evidence Lower Bound (ELBO) [28] as,

ELBO(q) = Eq(f)[log p(y | f)]−KL
(
q(u) ∥ p(u)

)
. (6)

The first term uses the variational posterior q(f) to explain
the data, while the second term acts as a regularizer by
penalizing deviations of q(u) from the GP prior p(u). The
inducing points Z and the parameters of q(u) are optimized
during training, which allows the model to adapt to the
structure of the data.

In this work, we initialize Z by applying K-Means clustering
on the training data points and selecting the cluster centroids
as inducing points. The number of inducing points ranges
between 200 and 800, depending on the dataset size; since
Lima has fewer data points, we chose 200. We observe that
the inducing points adapt spatially and spread across the Lima
region, which demonstrates the effectiveness of this approach
in capturing the spatial structure.

The kernel function used is a combination of a Radial
Basis Function (RBF) kernel and a Matern kernel, k(x,x′) =
kRBF(x,x

′) + kMatern(x,x
′), both employed Automatic Rel-

evance Determination (ARD), allowing the model to learn
individual length scales per features.

IV. EVALUATION

A. Dataset

We used the dataset with daily averaged PM2.5 values of
the Lima region from the year 2016. There are 16 features
in the dataset, which include 6 daily averaged meteorological
features: relative humidity, precipitation, temperature, and
more; 2 topographical features, such as population density
and elevation for the sensor’s location; a pollution indicator:
aerosol optical depth (AOD) that represents aerosol’s scatter;
2 geo-location features: latitude and longitude; 2 temporal
features: day and month. The spatial irregularity was due to
sparse sensor placement, and the temporal irregularity was due
to gaps in the collected PM2.5 data over the 365-day period.

Lima has a total of 10 ground sensors to monitor air quality,
as shown in Figure 1(a). The sensors are primarily clustered
in central Lima, a densely populated region, while the high-
elevation areas to the eastern part, i.e., the Andes mountain
ranges, are notably devoid of sensors. This highlights the need
for synthetic data that spans the entire region and requires
minimal sensors for generation.

Lima currently has 10 ground sensors for monitoring PM2.5

as shown in Figure 1(a). These sensors are concentrated in
central Lima, the most densely populated area, while the
high-elevation regions to the east, i.e., the Andes Mountains,
are devoid of any sensors. This imbalance highlights the
importance of generating synthetic data that can cover the
entire region while being dependent on a limited number of
ground sensors.

To evaluate model performance, we generated 5 randomized
train-test splits where 4 sensors were used for training and the
remaining 6 for testing.

B. Models

Sparse Variational Gaussian Process (SVGP) model is
compared to 3 other regression models which includes (1)
Gradient Boosting regressor, parameter optimized to lr =
0.05, estimators = 1000, (2) Lasso Regressor with α = 0.5,
and (3) Gaussian Process Regressor (GPR) using a combined
RBF, Constant and White Kernel, and 10 optimizer restarts
for parameter tuning. For the SVGP model, we utilized 200
inducing points selected via the KMeans clustering, a combi-
nation of RBF and Matern kernels, with the variational strategy
optimizing the inducing points over 1500 epochs.

All models are trained on the same standardized input
features and evaluated using 20 train–test splits to ensure fair
comparison. The model’s performance is assessed using two
metrics: the coefficient of determination (R²) and the Root
mean squared error (RMSE).

C. Results

We validate our hypothesis first using qualitative analy-
sis, where we visualize how the inducing points grow over
the region. Next, we compare the performance of SVGP to
competitive regression models to determine if such spatial
adaptation is useful.



Fig. 1. Visualizing growth of inducing points when initialized (yellow) compared to when optimized (purple) over 2 splits.

1) Qualitative Analysis: In Figure 1, we analyze the evolu-
tion of the inducing points when they are initialized (Figure 1,
yellow marker) and optimized (Figure 1, purple marker) for the
first and second train-test split. Initially, the inducing points,
selected via K-means clustering, are concentrated within the
area around the training sensors (red marker). After optimiza-
tion, the inducing points spread towards the northern region
and cover a few test sensor locations (blue marker). This
spatial expansion is indicative of potential generalization and
the need to strategically place train sensors to improve the
performance of the ML model.

We also observe the spread of inducing points in splits 1 and
2, which validates our hypothesis of sensor placement. In split
1, the sensors are sparse and we see the optimization growing
northwards, whereas in split 2, the initial inducing points are
almost linearly placed and therefore their spread has been
limited around their ground locations. Hence, strategically
placed sensors will affect the growth of inducing points, which
will consequently impact model performance.

Model R2 RMSE
SVGP 0.35 10.13
Gaussian Process 0.14 11.24
Gradient Boosting 0.19 11.25
Lasso Regression 0.19 11.30

TABLE I
ACCURACY OF REGRESSION MODELS ON LIMA DATA.

2) Quantitative Analysis: Table I presents the comparative
performance of the regression models, where we observe
that SVGP achieves the best performance, outperforming the
second-best-performing model, Gradient Boosting regression,
by approximately 84% for R2 score and 10% for RMSE.
This can be attributed to the optimal initialization of inducing
points (in our case, using KMeans clustering) and SVGP’s
ability to adapt spatially over the region. Conversely, while
the Gaussian Process model employs the same training pro-
cess to fit over the observed data points, it doesn’t share
the same advantage of using approximated data points that
have been spatially adapted. The source code is available at:
https://github.com/shrey-gupta/svgps-for-low-sensor

V. DISCUSSION AND FUTURE WORK

The optimized inducing points can be used as synthetic data
points with any of the comparative models we have used. This
would require approximating PM2.5 values at these locations
using standard interpolation strategies such as Kriging and
more. We discuss how this strategy can be used in conjunction
with other state-of-the-art techniques to design an improved
prediction model, as well as its applications in other fields.

A. Generative Modeling to Reduce Spatial Irregularity

By utilizing the spatially adaptable behavior of SVGP, we
propose that the optimized inducing points can be leveraged in
conjunction with a generative architecture [29] to synthesize
data that reduces spatial irregularities in the dataset. Such
an approach could enhance predictive performance in regions
with sparse sensor coverage by generating robust training data.

B. Low-Cost Sensors for Extreme Event Modeling

To improve coverage in regions with high PM2.5 levels,
we propose first deploying a few low-cost sensors in these
hotspots. These sensors can help capture extreme values that
are underrepresented in the dataset. The observations from
these sensors can be used to collect inducing points that
focus on modeling tail-end distributions of PM2.5 [30]. Sub-
sequently, a generative model can be applied to these inducing
points to simulate high-pollution scenarios. This pipeline can
be utilized to improve the robustness and generalization of the
PM2.5 model for forecasting extreme air quality events.

C. Reinforcement Learning for Inducing Point Selection

The optimized inducing points capture the locations where
the model is most sensitive or uncertain, i.e., areas of high
variance as inferred by the SVGP model. This configuration
can also serve as an input to a reinforcement learning (RL)
agent. The RL agent can utilize the inducing points as part of
its state to generate new labels in the sparse sensor regions.
The reward function can be tied to performance gains such as
improved predictive accuracy in these regions.

Moreover, the inducing points can act as learned signals that
affect decisions in active learning (where new data will help
the most) [31] or adaptive sensing (where new sensors will
help the most) [32].

https://github.com/shrey-gupta/svgps-for-low-sensor


VI. CONCLUSION

In this work, we investigate the problem of predicting PM2.5

concentrations in regions with sparse sensor networks, where
data scarcity and non-IID characteristics reduce the prediction
accuracy of traditional machine learning models. We propose
using Sparse Variational Gaussian Processes (SVGPs) as a
solution that requires no auxiliary data sources and addresses
limitations such as irregularities in sensor placement and
distribution imbalance. Our findings demonstrate that inducing
points of SVGPs exhibit spatial adaptation, i.e., they spread
across the region to capture the underlying data distribution.
We also show that strategic sensor placement improves the
spatial adaptation. We validate these hypotheses using PM2.5

data from Lima, Peru. We found that SVGPs outperform
competitive regression models by 84% and 10% for R2 and
RMSE scores, respectively. These results suggest that SVGPs
provide a scalable and flexible framework for predicting PM2.5

in sparse sensor regions. Future work can extend this approach
to larger-scale sensor deployments and explore strategies for
sensor placement to improve monitoring in developing regions.
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